MNN/source/shape/ShapeReduction.cpp

79 lines
2.7 KiB
C++

//
// ShapeReduction.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
static int _getRealAxis(int axis, int n) {
if (axis < 0) {
return axis + n;
}
return axis;
}
class ReductionComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto output = outputs[0];
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
auto reduce = op->main_as_ReductionParam();
output->buffer().type = inputs[0]->buffer().type;
if (nullptr == reduce->dim() && inputs.size() == 1) {
if (reduce->keepDims()) {
output->buffer().dimensions = inputs[0]->dimensions();
for (int i = 0; i < inputs[0]->dimensions(); i++) {
output->setLength(i, 1);
}
} else {
output->buffer().dimensions = 0;
}
return true;
}
uint8_t reduceMask[MNN_MAX_TENSOR_DIM];
::memset(reduceMask, 0, sizeof(uint8_t) * MNN_MAX_TENSOR_DIM);
if (nullptr != reduce->dim()) {
for (int i = 0; i < reduce->dim()->size(); ++i) {
reduceMask[_getRealAxis(reduce->dim()->data()[i], inputs[0]->dimensions())] = 1;
}
} else {
auto input1 = inputs[1];
auto size = input1->elementSize();
auto dims = input1->host<int32_t>();
for (int i = 0; i < size; ++i) {
reduceMask[_getRealAxis(dims[i], inputs[0]->dimensions())] = 1;
}
}
auto input = inputs[0];
const int inputDimensions = input->dimensions();
int offset = 0;
for (int i = 0; i < inputDimensions; ++i) {
if (1 == reduceMask[i]) {
if (reduce->keepDims()) {
output->buffer().dim[offset].extent = 1;
offset++;
}
continue;
}
output->buffer().dim[offset].extent = input->length(i);
offset++;
}
output->buffer().dimensions = offset;
return true;
}
};
REGISTER_SHAPE_INPUTS(ReductionComputer, OpType_Reduction, {1});
} // namespace MNN