2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUCast.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/08/05.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUCast.hpp"
|
2021-04-08 15:34:23 +08:00
|
|
|
#include "core/TensorUtils.hpp"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Macro.h"
|
2021-04-08 15:34:23 +08:00
|
|
|
#include "backend/cpu/compute/Int8FunctionsOpt.h"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
2021-04-08 15:34:23 +08:00
|
|
|
ErrorCode CPUCastCreator::cast(void* const inputRaw, void* outputRaw, halide_type_t inputType, halide_type_t outputType,
|
|
|
|
int number, float scale, float zero, float min, float max) {
|
|
|
|
int c4Size = number / 4;
|
|
|
|
int remain = c4Size * 4;
|
|
|
|
std::vector<float> scales(4, scale);
|
|
|
|
if (inputType == halide_type_of<float>() && outputType == halide_type_of<int8_t>()) {
|
|
|
|
std::for_each(scales.begin(), scales.end(), [](float& x){ x = x == 0.f ? 0.f : 1 / x; });
|
|
|
|
MNNFloat2Int8(static_cast<float*>(inputRaw), static_cast<int8_t*>(outputRaw), c4Size, scales.data(), min, max, zero);
|
|
|
|
for (int i = remain; i < number; i++) {
|
|
|
|
float x = static_cast<float* const>(inputRaw)[i] * scale;
|
|
|
|
static_cast<float*>(outputRaw)[i] = std::max(std::min(x, max), min);;
|
|
|
|
}
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
if (inputType == halide_type_of<int8_t>() && outputType == halide_type_of<float>()) {
|
|
|
|
MNNInt8ScaleToFloat(static_cast<float*>(outputRaw), static_cast<int8_t*>(inputRaw), scales.data(), c4Size, zero);
|
|
|
|
for (int i = remain; i < number; i++) {
|
|
|
|
static_cast<float*>(outputRaw)[i] = static_cast<int8_t* const>(inputRaw)[i] * scale;
|
|
|
|
}
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
MNN_ERROR("Don't support cast type \n");
|
|
|
|
return NOT_SUPPORT;
|
|
|
|
}
|
|
|
|
ErrorCode CPUCastCreator::cast(const Tensor* input, const Tensor* output) {
|
|
|
|
auto srcT = input->getType();
|
|
|
|
auto dstT = output->getType();
|
|
|
|
auto ib = input->buffer();
|
|
|
|
auto ob = output->buffer();
|
|
|
|
if (srcT == dstT) {
|
|
|
|
::memcpy(ib.host, ob.host, input->size());
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
auto& quantAttr = TensorUtils::getDescribe(input)->quantAttr;
|
|
|
|
if (quantAttr == nullptr) {
|
|
|
|
MNN_ERROR("No quant info for Cast\n");
|
|
|
|
return INVALID_VALUE;
|
|
|
|
}
|
|
|
|
int totalSize = input->elementSize();
|
|
|
|
auto code = cast(ib.host, ob.host, srcT, dstT, totalSize, quantAttr->scale, quantAttr->zero, quantAttr->min, quantAttr->max);
|
|
|
|
if (NO_ERROR != code) {
|
|
|
|
MNN_ERROR("Error in CPUCast\n");
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
template <typename srcT, typename dstT>
|
|
|
|
class CastDataType : public Execution {
|
|
|
|
public:
|
|
|
|
CastDataType(Backend *b) : Execution(b) {
|
|
|
|
// nothing to do
|
|
|
|
}
|
|
|
|
virtual ~CastDataType() = default;
|
|
|
|
|
|
|
|
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
|
|
|
auto srcData = input->host<srcT>();
|
|
|
|
auto dstData = output->host<dstT>();
|
|
|
|
const auto inputDataSize = input->elementSize();
|
2020-12-15 14:12:35 +08:00
|
|
|
MNN_ASSERT(inputDataSize == output->elementSize());
|
2019-04-17 10:49:11 +08:00
|
|
|
for (int i = 0; i < inputDataSize; i++) {
|
|
|
|
dstData[i] = static_cast<dstT>(srcData[i]);
|
|
|
|
}
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
};
|
2019-08-22 20:13:46 +08:00
|
|
|
class Bit32ToBool : public Execution {
|
|
|
|
public:
|
|
|
|
Bit32ToBool(Backend *b) : Execution(b) {
|
|
|
|
// nothing to do
|
|
|
|
}
|
|
|
|
virtual ~Bit32ToBool() = default;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2019-08-22 20:13:46 +08:00
|
|
|
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
|
|
|
auto srcData = input->host<int>();
|
|
|
|
auto dstData = output->host<int>();
|
|
|
|
const auto inputDataSize = input->elementSize();
|
2020-12-15 14:12:35 +08:00
|
|
|
MNN_ASSERT(inputDataSize == output->elementSize());
|
2019-08-22 20:13:46 +08:00
|
|
|
for (int i = 0; i < inputDataSize; i++) {
|
|
|
|
int value = srcData[i] == 0 ? 0 : 1;
|
|
|
|
dstData[i] = value;
|
|
|
|
}
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
};
|
2019-04-17 10:49:11 +08:00
|
|
|
class CopyExecution : public Execution {
|
|
|
|
public:
|
|
|
|
CopyExecution(Backend *b) : Execution(b) {
|
|
|
|
// nothing to do
|
|
|
|
}
|
|
|
|
virtual ~CopyExecution() = default;
|
|
|
|
|
|
|
|
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
|
|
|
auto srcData = input->host<char>();
|
|
|
|
auto dstData = output->host<char>();
|
|
|
|
const auto inputDataSize = input->size();
|
|
|
|
const auto outputDataSize = output->size();
|
|
|
|
if (inputDataSize != outputDataSize) {
|
|
|
|
return INPUT_DATA_ERROR;
|
|
|
|
}
|
|
|
|
::memcpy(dstData, srcData, inputDataSize);
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static DataType _mapDataType(DataType src) {
|
|
|
|
if (DataType_DT_BOOL == src) {
|
|
|
|
return DataType_DT_INT32;
|
|
|
|
}
|
2019-07-04 19:38:23 +08:00
|
|
|
if (DataType_DT_INT64 == src) {
|
|
|
|
return DataType_DT_INT32;
|
|
|
|
}
|
|
|
|
if (DataType_DT_DOUBLE == src) {
|
|
|
|
return DataType_DT_FLOAT;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
return src;
|
|
|
|
}
|
|
|
|
Execution *CPUCastCreator::onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const {
|
|
|
|
auto cast = op->main_as_CastParam();
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
// cast param srcT is invalid
|
|
|
|
// auto srcT = _mapDataType(cast->srcT());
|
2019-04-17 10:49:11 +08:00
|
|
|
auto dstT = _mapDataType(cast->dstT());
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
|
|
|
|
const auto &inputDataType = inputs[0]->getType();
|
|
|
|
|
2020-05-07 18:19:02 +08:00
|
|
|
if (inputDataType.bytes() == 4 && cast->dstT() == MNN::DataType_DT_BOOL) {
|
|
|
|
return new Bit32ToBool(backend);
|
|
|
|
}
|
2019-07-04 19:38:23 +08:00
|
|
|
if (inputs[0]->buffer().type == outputs[0]->buffer().type) {
|
2019-04-17 10:49:11 +08:00
|
|
|
return new CopyExecution(backend);
|
|
|
|
}
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
if (dstT == MNN::DataType_DT_INT32 && halide_type_of<float>() == inputDataType) {
|
2019-04-17 10:49:11 +08:00
|
|
|
return new CastDataType<float, int>(backend);
|
|
|
|
}
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
if (dstT == MNN::DataType_DT_FLOAT && halide_type_of<int32_t>() == inputDataType) {
|
2019-04-17 10:49:11 +08:00
|
|
|
return new CastDataType<int, float>(backend);
|
|
|
|
}
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
if (dstT == MNN::DataType_DT_FLOAT && halide_type_of<uint8_t>() == inputDataType) {
|
2019-04-17 10:49:11 +08:00
|
|
|
return new CastDataType<uint8_t, float>(backend);
|
|
|
|
}
|
2020-01-15 13:33:47 +08:00
|
|
|
if (dstT == MNN::DataType_DT_FLOAT && halide_type_of<int8_t>() == inputDataType) {
|
|
|
|
return new CastDataType<int8_t, float>(backend);
|
|
|
|
}
|
|
|
|
if (dstT == MNN::DataType_DT_INT8 && halide_type_of<float>() == inputDataType) {
|
|
|
|
return new CastDataType<float, int8_t>(backend);
|
|
|
|
}
|
2020-04-29 10:12:16 +08:00
|
|
|
if (dstT == MNN::DataType_DT_UINT8 && halide_type_of<float>() == inputDataType) {
|
|
|
|
return new CastDataType<float, uint8_t>(backend);
|
|
|
|
}
|
|
|
|
if (dstT == MNN::DataType_DT_UINT8 && halide_type_of<int32_t>() == inputDataType) {
|
|
|
|
return new CastDataType<int32_t, uint8_t>(backend);
|
|
|
|
}
|
2019-12-27 22:16:57 +08:00
|
|
|
if (dstT == MNN::DataType_DT_INT32 && halide_type_of<uint8_t>() == inputDataType) {
|
|
|
|
return new CastDataType<uint8_t, int32_t>(backend);
|
|
|
|
}
|
2020-04-29 10:12:16 +08:00
|
|
|
if (dstT == MNN::DataType_DT_INT32 && halide_type_of<int8_t>() == inputDataType) {
|
|
|
|
return new CastDataType<int8_t, int32_t>(backend);
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
MNN_PRINT("Don't support cast form %d to %d\n", cast->srcT(), cast->dstT());
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUCastCreator, OpType_Cast);
|
|
|
|
} // namespace MNN
|