MNN/source/shape/ShapePool.cpp

80 lines
3.1 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapePool.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "Macro.h"
#include "SizeComputer.hpp"
namespace MNN {
class PoolSizeComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto input = inputs[0];
auto output = outputs[0];
::memcpy(output->buffer().dim, input->buffer().dim, input->buffer().dimensions * sizeof(halide_dimension_t));
auto layer = op->main_as_Pool();
int outw = 1;
int outh = 1;
if (!layer->isGlobal()) {
// when given explicit pad value in tensorflow mode pool, size compute will fast failed to help find problem
if ((layer->padType() == PoolPadType_VALID || layer->padType() == PoolPadType_SAME) && (layer->padX() != 0 || layer->padY() != 0)) {
MNN_PRINT("tensorflow mode pool should not have explict pad value\n");
return false;
}
2019-04-17 10:49:11 +08:00
int w = input->width();
int h = input->height();
if (layer->padX() > 0)
w += layer->padX() * 2;
if (layer->padY() > 0)
h += layer->padY() * 2;
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
outw = ceil((float)w / (float)layer->strideX());
outh = ceil((float)h / (float)layer->strideY());
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
outw = ceil((float)(w - layer->kernelX() + 1) / (float)layer->strideX());
outh = ceil((float)(h - layer->kernelY() + 1) / (float)layer->strideY());
} else {
if (layer->ceilModel()) {
outw = UP_DIV(w - layer->kernelX(), layer->strideX()) + 1;
outh = UP_DIV(h - layer->kernelY(), layer->strideY()) + 1;
} else {
outw = floor((w - layer->kernelX()) / layer->strideX() + 1);
outh = floor((h - layer->kernelY()) / layer->strideY() + 1);
}
2019-04-17 10:49:11 +08:00
}
}
if (outw <= 0 || outh <= 0) {
return false;
}
output->buffer().dim[3].extent = outw;
output->buffer().dim[2].extent = outh;
output->buffer().type = input->buffer().type;
2019-04-17 10:49:11 +08:00
return true;
}
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto size = (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
auto layer = op->main_as_Pool();
return size * layer->kernelX() * layer->kernelY();
}
};
REGISTER_SHAPE(PoolSizeComputer, OpType_Pooling);
REGISTER_SHAPE(PoolSizeComputer, OpType_PoolInt8);
2019-04-17 10:49:11 +08:00
} // namespace MNN