| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  CPUInstanceNorm.hpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2019/02/28.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUInstanceNorm.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | #include <math.h>
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUBackend.hpp"
 | 
					
						
							|  |  |  | #include "core/Concurrency.h"
 | 
					
						
							|  |  |  | #include <MNN/MNNDefine.h>
 | 
					
						
							|  |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | #include "core/TensorUtils.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | #ifdef MNN_USE_NEON
 | 
					
						
							|  |  |  | #include <arm_neon.h>
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | CPUInstanceNorm::CPUInstanceNorm(Backend* backend, const MNN::Op* op) : Execution(backend) { | 
					
						
							|  |  |  |     auto normParam     = op->main_as_BatchNorm(); | 
					
						
							|  |  |  |     const int channels = normParam->channels(); | 
					
						
							|  |  |  |     mEpsilon           = normParam->epsilon(); | 
					
						
							|  |  |  |     mScale.reset(ALIGN_UP4(channels)); | 
					
						
							|  |  |  |     mScale.clear(); | 
					
						
							|  |  |  |     if (normParam->slopeData() && normParam->slopeData()->data()) { | 
					
						
							|  |  |  |         ::memcpy(mScale.get(), normParam->slopeData()->data(), channels * sizeof(float)); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     mBias.reset(ALIGN_UP4(channels)); | 
					
						
							|  |  |  |     mBias.clear(); | 
					
						
							|  |  |  |     if (normParam->biasData() && normParam->biasData()->data()) { | 
					
						
							|  |  |  |         ::memcpy(mBias.get(), normParam->biasData()->data(), channels * sizeof(float)); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ErrorCode CPUInstanceNorm::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) { | 
					
						
							|  |  |  |     MNN_ASSERT(3 == inputs.size()); | 
					
						
							|  |  |  |     MNN_ASSERT(1 == outputs.size()); | 
					
						
							|  |  |  |     auto input = inputs[0]; | 
					
						
							|  |  |  |     MNN_ASSERT(MNN_DATA_FORMAT_NC4HW4 == TensorUtils::getDescribe(input)->dimensionFormat); | 
					
						
							|  |  |  |     auto mean                = inputs[1]; | 
					
						
							|  |  |  |     auto variance            = inputs[2]; | 
					
						
							|  |  |  |     auto output              = outputs[0]; | 
					
						
							|  |  |  |     const int batch          = input->batch(); | 
					
						
							|  |  |  |     const int batchStride    = input->stride(0); | 
					
						
							|  |  |  |     const int channelsDiv4   = UP_DIV(input->channel(), 4); | 
					
						
							|  |  |  |     const int inImageSize    = input->stride(1); | 
					
						
							|  |  |  |     const float* scalePtr    = mScale.get(); | 
					
						
							|  |  |  |     const float* biasPtr     = mBias.get(); | 
					
						
							|  |  |  |     const float* meanPtr     = mean->host<float>(); | 
					
						
							|  |  |  |     const float* variancePtr = variance->host<float>(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (int b = 0; b < batch; ++b) { | 
					
						
							|  |  |  |         const float* batchMeanPtr     = meanPtr + b * mean->stride(0); | 
					
						
							|  |  |  |         const float* batchVariancePtr = variancePtr + b * variance->stride(0); | 
					
						
							|  |  |  |         const float* batchInputPtr    = input->host<float>() + b * batchStride; | 
					
						
							|  |  |  |         float* batchOutputPtr         = output->host<float>() + b * batchStride; | 
					
						
							|  |  |  |         MNN_CONCURRENCY_BEGIN(ic, channelsDiv4); | 
					
						
							|  |  |  |         const int channelOffset       = (int)ic << 2; | 
					
						
							|  |  |  |         const float* channelsInputPtr = batchInputPtr + channelOffset * inImageSize; | 
					
						
							|  |  |  |         float* channelsOutputPtr      = batchOutputPtr + channelOffset * inImageSize; | 
					
						
							|  |  |  | #ifdef MNN_USE_NEON
 | 
					
						
							|  |  |  |         float32x4_t epsilon       = vdupq_n_f32(mEpsilon); | 
					
						
							|  |  |  |         float32x4_t batchVariance = vld1q_f32(batchVariancePtr + channelOffset); | 
					
						
							|  |  |  |         float32x4_t meanValue     = vld1q_f32(batchMeanPtr + channelOffset); | 
					
						
							|  |  |  |         float32x4_t scaleValue    = vld1q_f32(scalePtr + channelOffset); | 
					
						
							|  |  |  |         float32x4_t biasVaule     = vld1q_f32(biasPtr + channelOffset); | 
					
						
							|  |  |  |         float32x4_t rsqrt         = vrsqrteq_f32(batchVariance + epsilon); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         float32x4_t gamma = vmulq_f32(scaleValue, rsqrt); | 
					
						
							|  |  |  |         float32x4_t beta  = vsubq_f32(biasVaule, meanValue * gamma); | 
					
						
							|  |  |  |         for (int i = 0; i < inImageSize; ++i) { | 
					
						
							|  |  |  |             float32x4_t value = vld1q_f32(channelsInputPtr + i * 4); | 
					
						
							|  |  |  |             vst1q_f32(channelsOutputPtr + i * 4, value * gamma + beta); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |         float gamma[4]; | 
					
						
							|  |  |  |         float beta[4]; | 
					
						
							|  |  |  |         for (int k = 0; k < 4; ++k) { | 
					
						
							|  |  |  |             const int index = channelOffset + k; | 
					
						
							|  |  |  |             gamma[k]        = scalePtr[index] / sqrt(batchVariancePtr[index] + mEpsilon); | 
					
						
							|  |  |  |             beta[k] = biasPtr[index] - scalePtr[index] * batchMeanPtr[index] / sqrt(batchVariancePtr[index] + mEpsilon); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for (int i = 0; i < inImageSize; ++i) { | 
					
						
							|  |  |  |             for (int k = 0; k < 4; ++k) { | 
					
						
							|  |  |  |                 channelsOutputPtr[i * 4 + k] = channelsInputPtr[i * 4 + k] * gamma[k] + beta[k]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |         MNN_CONCURRENCY_END(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CPUInstanceNormCreator : public CPUBackend::Creator { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, | 
					
						
							|  |  |  |                                 const MNN::Op* op, Backend* backend) const override { | 
					
						
							|  |  |  |         return new CPUInstanceNorm(backend, op); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | REGISTER_CPU_OP_CREATOR(CPUInstanceNormCreator, OpType_InstanceNorm); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | } // namespace MNN
 |