mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			113 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUInstanceNorm.hpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/02/28.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUInstanceNorm.hpp"
 | |
| #include <math.h>
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "core/Concurrency.h"
 | |
| #include <MNN/MNNDefine.h>
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| #ifdef MNN_USE_NEON
 | |
| #include <arm_neon.h>
 | |
| #endif
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUInstanceNorm::CPUInstanceNorm(Backend* backend, const MNN::Op* op) : Execution(backend) {
 | |
|     auto normParam     = op->main_as_BatchNorm();
 | |
|     const int channels = normParam->channels();
 | |
|     mEpsilon           = normParam->epsilon();
 | |
|     mScale.reset(ALIGN_UP4(channels));
 | |
|     mScale.clear();
 | |
|     if (normParam->slopeData() && normParam->slopeData()->data()) {
 | |
|         ::memcpy(mScale.get(), normParam->slopeData()->data(), channels * sizeof(float));
 | |
|     }
 | |
| 
 | |
|     mBias.reset(ALIGN_UP4(channels));
 | |
|     mBias.clear();
 | |
|     if (normParam->biasData() && normParam->biasData()->data()) {
 | |
|         ::memcpy(mBias.get(), normParam->biasData()->data(), channels * sizeof(float));
 | |
|     }
 | |
| }
 | |
| 
 | |
| ErrorCode CPUInstanceNorm::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     MNN_ASSERT(3 == inputs.size());
 | |
|     MNN_ASSERT(1 == outputs.size());
 | |
|     auto input = inputs[0];
 | |
|     MNN_ASSERT(MNN_DATA_FORMAT_NC4HW4 == TensorUtils::getDescribe(input)->dimensionFormat);
 | |
|     auto mean                = inputs[1];
 | |
|     auto variance            = inputs[2];
 | |
|     auto output              = outputs[0];
 | |
|     const int batch          = input->batch();
 | |
|     const int batchStride    = input->stride(0);
 | |
|     const int channelsDiv4   = UP_DIV(input->channel(), 4);
 | |
|     const int inImageSize    = input->stride(1);
 | |
|     const float* scalePtr    = mScale.get();
 | |
|     const float* biasPtr     = mBias.get();
 | |
|     const float* meanPtr     = mean->host<float>();
 | |
|     const float* variancePtr = variance->host<float>();
 | |
| 
 | |
|     for (int b = 0; b < batch; ++b) {
 | |
|         const float* batchMeanPtr     = meanPtr + b * mean->stride(0);
 | |
|         const float* batchVariancePtr = variancePtr + b * variance->stride(0);
 | |
|         const float* batchInputPtr    = input->host<float>() + b * batchStride;
 | |
|         float* batchOutputPtr         = output->host<float>() + b * batchStride;
 | |
|         MNN_CONCURRENCY_BEGIN(ic, channelsDiv4);
 | |
|         const int channelOffset       = (int)ic << 2;
 | |
|         const float* channelsInputPtr = batchInputPtr + channelOffset * inImageSize;
 | |
|         float* channelsOutputPtr      = batchOutputPtr + channelOffset * inImageSize;
 | |
| #ifdef MNN_USE_NEON
 | |
|         float32x4_t epsilon       = vdupq_n_f32(mEpsilon);
 | |
|         float32x4_t batchVariance = vld1q_f32(batchVariancePtr + channelOffset);
 | |
|         float32x4_t meanValue     = vld1q_f32(batchMeanPtr + channelOffset);
 | |
|         float32x4_t scaleValue    = vld1q_f32(scalePtr + channelOffset);
 | |
|         float32x4_t biasVaule     = vld1q_f32(biasPtr + channelOffset);
 | |
|         float32x4_t rsqrt         = vrsqrteq_f32(batchVariance + epsilon);
 | |
| 
 | |
|         float32x4_t gamma = vmulq_f32(scaleValue, rsqrt);
 | |
|         float32x4_t beta  = vsubq_f32(biasVaule, meanValue * gamma);
 | |
|         for (int i = 0; i < inImageSize; ++i) {
 | |
|             float32x4_t value = vld1q_f32(channelsInputPtr + i * 4);
 | |
|             vst1q_f32(channelsOutputPtr + i * 4, value * gamma + beta);
 | |
|         }
 | |
| 
 | |
| #else
 | |
|         float gamma[4];
 | |
|         float beta[4];
 | |
|         for (int k = 0; k < 4; ++k) {
 | |
|             const int index = channelOffset + k;
 | |
|             gamma[k]        = scalePtr[index] / sqrt(batchVariancePtr[index] + mEpsilon);
 | |
|             beta[k] = biasPtr[index] - scalePtr[index] * batchMeanPtr[index] / sqrt(batchVariancePtr[index] + mEpsilon);
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < inImageSize; ++i) {
 | |
|             for (int k = 0; k < 4; ++k) {
 | |
|                 channelsOutputPtr[i * 4 + k] = channelsInputPtr[i * 4 + k] * gamma[k] + beta[k];
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         MNN_CONCURRENCY_END();
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUInstanceNormCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const override {
 | |
|         return new CPUInstanceNorm(backend, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUInstanceNormCreator, OpType_InstanceNorm);
 | |
| 
 | |
| } // namespace MNN
 |