| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  CPUQuantizedMaxPool.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2018/08/08.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUBackend.hpp"
 | 
					
						
							| 
									
										
										
										
											2022-07-19 13:52:07 +08:00
										 |  |  | #ifdef MNN_SUPPORT_DEPRECATED_OP
 | 
					
						
							|  |  |  | #include "backend/cpu/CPUQuantizedMaxPool.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUQuantizationUtils.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/compute/CommonOptFunction.h"
 | 
					
						
							|  |  |  | #include "core/Macro.h"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | CPUQuantizedMaxPool::CPUQuantizedMaxPool(Backend *backend, const Op *op) : Execution(backend) { | 
					
						
							|  |  |  |     auto mp       = op->main_as_QuantizedMaxPool(); | 
					
						
							|  |  |  |     mKernelWidth  = mp->kernelX(); | 
					
						
							|  |  |  |     mKernelHeight = mp->kernelY(); | 
					
						
							|  |  |  |     mPadWidth     = mp->padX(); | 
					
						
							|  |  |  |     mPadHeight    = mp->padY(); | 
					
						
							|  |  |  |     mStrideWidth  = mp->strideX(); | 
					
						
							|  |  |  |     mStrideHeight = mp->strideY(); | 
					
						
							|  |  |  |     mPadMode      = mp->padType(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ErrorCode CPUQuantizedMaxPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { | 
					
						
							|  |  |  |     auto input  = inputs[0]; | 
					
						
							|  |  |  |     auto output = outputs[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     MNN_ASSERT(input->buffer().dimensions == 4); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // input : nhwc
 | 
					
						
							|  |  |  |     const int32_t inBatch   = input->buffer().dim[0].extent; | 
					
						
							|  |  |  |     const int32_t inRows    = input->buffer().dim[1].extent; | 
					
						
							|  |  |  |     const int32_t inCols    = input->buffer().dim[2].extent; | 
					
						
							|  |  |  |     const int32_t inChannel = input->buffer().dim[3].extent; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     int32_t padRows          = mPadHeight; | 
					
						
							|  |  |  |     int32_t padCols          = mPadWidth; | 
					
						
							|  |  |  |     const int32_t windowRows = mKernelHeight; | 
					
						
							|  |  |  |     const int32_t windowCols = mKernelWidth; | 
					
						
							|  |  |  |     const int32_t rowStride  = mStrideHeight; | 
					
						
							|  |  |  |     const int32_t colStride  = mStrideWidth; | 
					
						
							|  |  |  |     const int32_t outHeight  = output->buffer().dim[1].extent; | 
					
						
							|  |  |  |     const int32_t outWidth   = output->buffer().dim[2].extent; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     switch (mPadMode) { | 
					
						
							|  |  |  |         case PoolPadType_VALID: | 
					
						
							|  |  |  |             padRows = padCols = 0; | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |         case PoolPadType_SAME: { | 
					
						
							|  |  |  |             auto widthNeeded  = (outWidth - 1) * colStride + windowCols - inCols; | 
					
						
							|  |  |  |             auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows; | 
					
						
							|  |  |  |             mPadWidth         = widthNeeded > 0 ? widthNeeded / 2 : 0; | 
					
						
							|  |  |  |             mPadHeight        = heightNeeded > 0 ? heightNeeded / 2 : 0; | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         default: | 
					
						
							|  |  |  |             MNN_ASSERT(false); | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     uint8_t *inputPtr            = (uint8_t *)input->buffer().host; | 
					
						
							|  |  |  |     uint8_t *outputPtr           = (uint8_t *)output->buffer().host; | 
					
						
							|  |  |  |     const uint8_t minAsQuantized = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (int batchIndex = 0; batchIndex < inBatch; batchIndex++) { | 
					
						
							|  |  |  |         uint8_t *outputBatchPtr = outputPtr + batchIndex * outWidth * outHeight * inChannel; | 
					
						
							|  |  |  |         uint8_t *inputBatchPtr  = inputPtr + batchIndex * inCols * inRows * inChannel; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for (int channelIndex = 0; channelIndex < inChannel; channelIndex++) { | 
					
						
							|  |  |  |             for (int outHeightIndex = 0; outHeightIndex < outHeight; outHeightIndex++) { | 
					
						
							|  |  |  |                 for (int outWidthIndex = 0; outWidthIndex < outWidth; outWidthIndex++) { | 
					
						
							|  |  |  |                     uint8_t maxTemp          = std::numeric_limits<uint8_t>::min(); | 
					
						
							|  |  |  |                     int32_t inputHeightIndex = outHeightIndex * rowStride - padRows; | 
					
						
							|  |  |  |                     int32_t inputWidthIndex  = outWidthIndex * colStride - padCols; | 
					
						
							|  |  |  |                     uint8_t *outputTemp      = (uint8_t *)(outputBatchPtr + outHeightIndex * outWidth * inChannel + | 
					
						
							|  |  |  |                                                       outWidthIndex * inChannel + channelIndex); | 
					
						
							|  |  |  |                     for (int windowRowsIndex = 0; windowRowsIndex < windowRows; windowRowsIndex++) { | 
					
						
							|  |  |  |                         for (int windowColsIndex = 0; windowColsIndex < windowCols; windowColsIndex++) { | 
					
						
							|  |  |  |                             if (((inputWidthIndex + windowColsIndex) < 0) || | 
					
						
							|  |  |  |                                 ((inputWidthIndex + windowColsIndex) >= inCols) || | 
					
						
							|  |  |  |                                 ((inputHeightIndex + windowRowsIndex) < 0) || | 
					
						
							|  |  |  |                                 ((inputHeightIndex + windowRowsIndex) >= inRows)) { | 
					
						
							|  |  |  |                                 maxTemp = std::max(minAsQuantized, maxTemp); | 
					
						
							|  |  |  |                             } else { | 
					
						
							|  |  |  |                                 maxTemp = std::max( | 
					
						
							|  |  |  |                                     inputBatchPtr[(inputHeightIndex + windowRowsIndex) * inCols * inChannel + | 
					
						
							|  |  |  |                                                   (inputWidthIndex + windowColsIndex) * inChannel + channelIndex], | 
					
						
							|  |  |  |                                     maxTemp); | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     *outputTemp = maxTemp; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CPUQuantizedMaxPoolCreator : public CPUBackend::Creator { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, | 
					
						
							|  |  |  |                                 const MNN::Op *op, Backend *backend) const { | 
					
						
							|  |  |  |         return new CPUQuantizedMaxPool(backend, op); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | } // namespace MNN
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2022-07-19 13:52:07 +08:00
										 |  |  | namespace MNN { | 
					
						
							|  |  |  | REGISTER_CPU_OP_CREATOR_OLD(CPUQuantizedMaxPoolCreator, OpType_QuantizedMaxPool); | 
					
						
							|  |  |  | }; |