mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			117 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUQuantizedMaxPool.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/08/08.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #ifdef MNN_SUPPORT_DEPRECATED_OP
 | |
| #include "backend/cpu/CPUQuantizedMaxPool.hpp"
 | |
| #include "backend/cpu/CPUQuantizationUtils.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUQuantizedMaxPool::CPUQuantizedMaxPool(Backend *backend, const Op *op) : Execution(backend) {
 | |
|     auto mp       = op->main_as_QuantizedMaxPool();
 | |
|     mKernelWidth  = mp->kernelX();
 | |
|     mKernelHeight = mp->kernelY();
 | |
|     mPadWidth     = mp->padX();
 | |
|     mPadHeight    = mp->padY();
 | |
|     mStrideWidth  = mp->strideX();
 | |
|     mStrideHeight = mp->strideY();
 | |
|     mPadMode      = mp->padType();
 | |
| }
 | |
| 
 | |
| ErrorCode CPUQuantizedMaxPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     auto input  = inputs[0];
 | |
|     auto output = outputs[0];
 | |
| 
 | |
|     MNN_ASSERT(input->buffer().dimensions == 4);
 | |
| 
 | |
|     // input : nhwc
 | |
|     const int32_t inBatch   = input->buffer().dim[0].extent;
 | |
|     const int32_t inRows    = input->buffer().dim[1].extent;
 | |
|     const int32_t inCols    = input->buffer().dim[2].extent;
 | |
|     const int32_t inChannel = input->buffer().dim[3].extent;
 | |
| 
 | |
|     int32_t padRows          = mPadHeight;
 | |
|     int32_t padCols          = mPadWidth;
 | |
|     const int32_t windowRows = mKernelHeight;
 | |
|     const int32_t windowCols = mKernelWidth;
 | |
|     const int32_t rowStride  = mStrideHeight;
 | |
|     const int32_t colStride  = mStrideWidth;
 | |
|     const int32_t outHeight  = output->buffer().dim[1].extent;
 | |
|     const int32_t outWidth   = output->buffer().dim[2].extent;
 | |
| 
 | |
|     switch (mPadMode) {
 | |
|         case PoolPadType_VALID:
 | |
|             padRows = padCols = 0;
 | |
|             break;
 | |
|         case PoolPadType_SAME: {
 | |
|             auto widthNeeded  = (outWidth - 1) * colStride + windowCols - inCols;
 | |
|             auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
 | |
|             mPadWidth         = widthNeeded > 0 ? widthNeeded / 2 : 0;
 | |
|             mPadHeight        = heightNeeded > 0 ? heightNeeded / 2 : 0;
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             MNN_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     uint8_t *inputPtr            = (uint8_t *)input->buffer().host;
 | |
|     uint8_t *outputPtr           = (uint8_t *)output->buffer().host;
 | |
|     const uint8_t minAsQuantized = 0;
 | |
| 
 | |
|     for (int batchIndex = 0; batchIndex < inBatch; batchIndex++) {
 | |
|         uint8_t *outputBatchPtr = outputPtr + batchIndex * outWidth * outHeight * inChannel;
 | |
|         uint8_t *inputBatchPtr  = inputPtr + batchIndex * inCols * inRows * inChannel;
 | |
| 
 | |
|         for (int channelIndex = 0; channelIndex < inChannel; channelIndex++) {
 | |
|             for (int outHeightIndex = 0; outHeightIndex < outHeight; outHeightIndex++) {
 | |
|                 for (int outWidthIndex = 0; outWidthIndex < outWidth; outWidthIndex++) {
 | |
|                     uint8_t maxTemp          = std::numeric_limits<uint8_t>::min();
 | |
|                     int32_t inputHeightIndex = outHeightIndex * rowStride - padRows;
 | |
|                     int32_t inputWidthIndex  = outWidthIndex * colStride - padCols;
 | |
|                     uint8_t *outputTemp      = (uint8_t *)(outputBatchPtr + outHeightIndex * outWidth * inChannel +
 | |
|                                                       outWidthIndex * inChannel + channelIndex);
 | |
|                     for (int windowRowsIndex = 0; windowRowsIndex < windowRows; windowRowsIndex++) {
 | |
|                         for (int windowColsIndex = 0; windowColsIndex < windowCols; windowColsIndex++) {
 | |
|                             if (((inputWidthIndex + windowColsIndex) < 0) ||
 | |
|                                 ((inputWidthIndex + windowColsIndex) >= inCols) ||
 | |
|                                 ((inputHeightIndex + windowRowsIndex) < 0) ||
 | |
|                                 ((inputHeightIndex + windowRowsIndex) >= inRows)) {
 | |
|                                 maxTemp = std::max(minAsQuantized, maxTemp);
 | |
|                             } else {
 | |
|                                 maxTemp = std::max(
 | |
|                                     inputBatchPtr[(inputHeightIndex + windowRowsIndex) * inCols * inChannel +
 | |
|                                                   (inputWidthIndex + windowColsIndex) * inChannel + channelIndex],
 | |
|                                     maxTemp);
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     *outputTemp = maxTemp;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUQuantizedMaxPoolCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const {
 | |
|         return new CPUQuantizedMaxPool(backend, op);
 | |
|     }
 | |
| };
 | |
| } // namespace MNN
 | |
| #endif
 | |
| namespace MNN {
 | |
| REGISTER_CPU_OP_CREATOR_OLD(CPUQuantizedMaxPoolCreator, OpType_QuantizedMaxPool);
 | |
| };
 |