MNN/tools/cpp/ModuleBasic.cpp

458 lines
16 KiB
C++
Raw Normal View History

//
// ModuleBasic.cpp
// MNN
//
// Created by MNN on 2021/10/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "MNN_generated.h"
#include <MNN/expr/Expr.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/AutoTime.hpp>
#include "rapidjson/document.h"
2022-06-10 10:39:50 +08:00
#include "common/MemoryFormater.h"
#include <fstream>
#include <sstream>
#include <cmath>
using namespace MNN::Express;
using namespace MNN;
#define DUMP_NUM_DATA(type) \
auto data = tensor->host<type>(); \
for (int z = 0; z < outside; ++z) { \
for (int x = 0; x < width; ++x) { \
outputOs << data[x + z * width] << "\t"; \
} \
outputOs << "\n"; \
}
#define DUMP_CHAR_DATA(type) \
auto data = tensor->host<type>(); \
for (int z = 0; z < outside; ++z) { \
for (int x = 0; x < width; ++x) { \
outputOs << static_cast<int>(data[x + z * width]) << "\t"; \
} \
outputOs << "\n"; \
}
static void dumpTensor2File(const Tensor* tensor, const char* file, std::ofstream& orderFile) {
orderFile << file << std::endl;
std::ofstream outputOs(file);
auto type = tensor->getType();
int dimension = tensor->buffer().dimensions;
int width = 1;
if (dimension > 1) {
width = tensor->length(dimension - 1);
}
const int outside = tensor->elementSize() / width;
const auto dataType = type.code;
const auto dataBytes = type.bytes();
if (dataType == halide_type_float) {
DUMP_NUM_DATA(float);
}
if (dataType == halide_type_int && dataBytes == 4) {
DUMP_NUM_DATA(int32_t);
}
if (dataType == halide_type_uint && dataBytes == 1) {
DUMP_CHAR_DATA(uint8_t);
}
if (dataType == halide_type_int && dataBytes == 1) {
#ifdef MNN_USE_SSE
auto data = tensor->host<uint8_t>();
for (int z = 0; z < outside; ++z) {
for (int x = 0; x < width; ++x) {
outputOs << (static_cast<int>(data[x + z * width]) - 128) << "\t";
}
outputOs << "\n";
}
#else
DUMP_CHAR_DATA(int8_t);
#endif
}
}
std::ofstream gOrderFile;
static void _initDebug() {
gOrderFile.open("order.txt");
MNN::TensorCallBackWithInfo beforeCallBack = [&](const std::vector<MNN::Tensor*>& ntensors, const OperatorInfo* info) {
auto opName = info->name();
auto opCopyName = opName;
for (int j = 0; j < opCopyName.size(); ++j) {
if (opCopyName[j] == '/') {
opCopyName[j] = '_';
}
}
for (int i = 0; i < ntensors.size(); ++i) {
auto ntensor = ntensors[i];
auto outDimType = ntensor->getDimensionType();
auto expectTensor = new MNN::Tensor(ntensor, outDimType);
ntensor->copyToHostTensor(expectTensor);
std::ostringstream outputFileName;
outputFileName << "output/Input_" << opCopyName << "_" << i;
dumpTensor2File(expectTensor, outputFileName.str().c_str(), gOrderFile);
2022-06-10 10:39:50 +08:00
delete expectTensor;
}
return true;
};
MNN::TensorCallBackWithInfo callBack = [&](const std::vector<MNN::Tensor*>& ntensors, const OperatorInfo* info) {
auto opName = info->name();
for (int i = 0; i < ntensors.size(); ++i) {
auto ntensor = ntensors[i];
auto outDimType = ntensor->getDimensionType();
auto expectTensor = new MNN::Tensor(ntensor, outDimType);
ntensor->copyToHostTensor(expectTensor);
auto tensor = expectTensor;
std::ostringstream outputFileName;
auto opCopyName = opName;
for (int j = 0; j < opCopyName.size(); ++j) {
if (opCopyName[j] == '/') {
opCopyName[j] = '_';
}
}
if (tensor->dimensions() == 4) {
MNN_PRINT("Dimensions: 4, W,H,C,B: %d X %d X %d X %d, OP name %s : %d\n",
tensor->width(), tensor->height(), tensor->channel(), tensor->batch(), opName.c_str(), i);
} else {
std::ostringstream oss;
for (int i = 0; i < tensor->dimensions(); i++) {
oss << (i ? " X " : "") << tensor->length(i);
}
MNN_PRINT("Dimensions: %d, %s, OP name %s : %d\n", tensor->dimensions(), oss.str().c_str(), opName.c_str(), i);
}
outputFileName << "output/" << opCopyName << "_" << i;
dumpTensor2File(expectTensor, outputFileName.str().c_str(), gOrderFile);
2022-06-10 10:39:50 +08:00
delete expectTensor;
}
return true;
};
Express::Executor::getGlobalExecutor()->setCallBack(std::move(beforeCallBack), std::move(callBack));
}
static bool compareOutput(VARP output, const std::string& directName, const std::string& name, Dimensionformat dataFormat, int order) {
2022-06-10 10:39:50 +08:00
auto info = output->getInfo();
auto ptr = output->readMap<float>();
2022-06-10 10:39:50 +08:00
if (info && info->size <= 0) {
MNN_PRINT("skip checking value for zero content tensor %s\n", name.c_str());
return true;
}
if (nullptr == info || nullptr == ptr) {
2022-06-10 10:39:50 +08:00
MNN_ERROR("TESTERROR name:%s, info:%p, ptr:%p. size:%d\n", name.c_str(), info, ptr, info->size);
return false;
}
2022-06-10 10:39:50 +08:00
std::ifstream outputOrigin;
// First find key
{
std::ostringstream outputFileOs;
outputFileOs << directName << "/" << name <<".txt";
outputOrigin.open(outputFileOs.str().c_str());
}
// Second find order
if (outputOrigin.fail()) {
std::ostringstream outputFileOs;
outputFileOs << directName << "/" << order <<".txt";
outputOrigin.open(outputFileOs.str().c_str());
}
if (outputOrigin.fail()) {
MNN_PRINT("Skip check %s\n", name.c_str());
return true;
}
2022-06-10 10:39:50 +08:00
MNN_PRINT("before compare %s: (", name.c_str());
for (int i=0; i<info->dim.size(); ++i) {
MNN_PRINT("%d, ", info->dim[i]);
}
MNN_PRINT(")\n");
auto targetValue = _Input({info->dim}, info->order, info->type);
auto targetPtr = targetValue->writeMap<float>();
auto outputPtr = output->readMap<float>();
#define MNN_IS_INF(x) (fabs(x) == INFINITY)
#define MNN_IS_NAN(x) ((x) != (x))
for (int i=0; i<info->size; ++i) {
outputOrigin >> targetPtr[i];
if (MNN_IS_INF(outputPtr[i]) || MNN_IS_NAN(outputPtr[i])) {
MNN_ERROR("TESTERROR %s value error:%f\n", name.c_str(), outputPtr[i]);
return false;
}
}
auto absMax = _ReduceMax(_Abs(targetValue), {});
absMax = _Maximum(absMax, _Scalar<float>(0.0001f));
auto diff = _Abs(targetValue - output);
auto diffAbsMax = _ReduceMax(diff);
auto absMaxV = absMax->readMap<float>()[0];
auto diffAbsMaxV = diffAbsMax->readMap<float>()[0];
if (absMaxV * 0.01f < diffAbsMaxV || MNN_IS_NAN(absMaxV)) {
MNN_ERROR("TESTERROR %s value error : absMaxV:%f - DiffMax %f\n", name.c_str(), absMaxV, diffAbsMaxV);
return false;
}
return true;
}
int main(int argc, char *argv[]) {
if (argc < 3) {
2022-01-04 10:50:40 +08:00
MNN_ERROR("Usage: ./ModuleBasic.out ${test.mnn} ${Dir} [runMask] [forwardType] [runLoops] [numberThread] [precision] [cacheFile]\n");
return 0;
}
std::string modelName = argv[1];
std::string directName = argv[2];
MNN_PRINT("Test %s from input info: %s\n", modelName.c_str(), directName.c_str());
rapidjson::Document document;
std::map<std::string, float> inputInfo;
std::map<std::string, std::vector<int>> inputShape;
std::vector<std::string> inputNames;
std::vector<std::string> outputNames;
bool checkOutput = false;
2022-01-04 10:50:40 +08:00
int runMask = 0;
if (argc > 3) {
2022-01-04 10:50:40 +08:00
runMask = atoi(argv[3]);
if (runMask & 1) {
_initDebug();
}
}
bool shapeMutable = true;
{
std::ostringstream jsonNameOs;
jsonNameOs << directName << "/input.json";
std::ifstream fileNames(jsonNameOs.str().c_str());
std::ostringstream output;
output << fileNames.rdbuf();
auto outputStr = output.str();
document.Parse(outputStr.c_str());
if (document.HasParseError()) {
MNN_ERROR("Invalid json\n");
return 0;
}
if (document.HasMember("inputs")) {
auto inputsInfo = document["inputs"].GetArray();
for (auto iter = inputsInfo.begin(); iter !=inputsInfo.end(); iter++) {
auto obj = iter->GetObject();
std::string name = obj["name"].GetString();
inputNames.emplace_back(name);
MNN_PRINT("%s\n", name.c_str());
if (obj.HasMember("value")) {
float value = obj["value"].GetFloat();
inputInfo.insert(std::make_pair(name, value));
}
if (obj.HasMember("shape")) {
auto dims = obj["shape"].GetArray();
std::vector<int> shapes;
for (auto iter = dims.begin(); iter != dims.end(); iter++) {
shapes.emplace_back(iter->GetInt());
}
inputShape.insert(std::make_pair(name, shapes));
}
}
}
if (document.HasMember("outputs")) {
checkOutput = true;
auto array = document["outputs"].GetArray();
for (auto iter = array.begin(); iter !=array.end(); iter++) {
std::string name = iter->GetString();
MNN_PRINT("output: %s\n", name.c_str());
outputNames.emplace_back(name);
}
}
if (document.HasMember("shapeMutable")) {
shapeMutable = document["shapeMutable"].GetBool();
}
}
auto type = MNN_FORWARD_CPU;
if (argc > 4) {
type = (MNNForwardType)atoi(argv[4]);
MNN_PRINT("Use extra forward type: %d\n", type);
}
// Default single thread
int modeNum = 1;
if (argc > 6) {
modeNum = ::atoi(argv[6]);
}
int precision = BackendConfig::Precision_Normal;
if (argc > 7) {
precision = atoi(argv[7]);
}
2022-01-04 10:50:40 +08:00
const char* cacheFileName = ".tempcache";
if (argc > 8) {
cacheFileName = argv[8];
}
2022-06-24 18:30:05 +08:00
FUNC_PRINT(precision);
2022-01-04 10:50:40 +08:00
FUNC_PRINT_ALL(cacheFileName, s);
// create session
MNN::ScheduleConfig config;
config.type = type;
/*modeNum means gpuMode for GPU usage, Or means numThread for CPU usage.*/
config.numThread = modeNum;
// If type not fount, let it failed
config.backupType = type;
BackendConfig backendConfig;
// config.path.outputs.push_back("ResizeBilinear_2");
// backendConfig.power = BackendConfig::Power_High;
backendConfig.precision = static_cast<MNN::BackendConfig::PrecisionMode>(precision);
// backendConfig.memory = BackendConfig::Memory_High;
config.backendConfig = &backendConfig;
2022-06-10 10:39:50 +08:00
MNN::Express::Module::Config mConfig;
mConfig.shapeMutable = shapeMutable;
std::shared_ptr<Executor::RuntimeManager> rtmgr(Executor::RuntimeManager::createRuntimeManager(config));
2022-01-04 10:50:40 +08:00
rtmgr->setCache(cacheFileName);
if (runMask & 1) {
rtmgr->setMode(Interpreter::Session_Debug);
}
if (runMask & 8) {
rtmgr->setMode(Interpreter::Session_Input_Inside);
}
if (runMask & 16) {
rtmgr->setMode(Interpreter::Session_Backend_Auto);
rtmgr->setHint(Interpreter::MAX_TUNING_NUMBER, 50);
}
std::shared_ptr<Module> net(Module::load(inputNames, outputNames, modelName.c_str(), rtmgr, &mConfig));
if (net == nullptr) {
MNN_PRINT("Error: can't load module\n");
return 0;
}
auto mInfo = net->getInfo();
#define LOAD_DATA(TYPE)\
if (inputInfo.find(inputName) != inputInfo.end()) {\
auto value = inputInfo[inputName];\
for (int i=0; i<info->size; ++i) {\
ptr[i] = value;\
}\
} else {\
std::ostringstream fileNameOs;\
fileNameOs << directName << "/" << inputName << ".txt";\
auto fileName = fileNameOs.str();\
std::ifstream inputOs(fileName.c_str());\
if (inputOs.fail()) {\
MNN_ERROR("TESTERROR Can't open %s\n", fileName.c_str());\
continue;\
}\
for (int i=0; i<info->size; ++i) {\
inputOs >> ptr[i];\
}\
}
2022-06-10 10:39:50 +08:00
std::vector<VARP> inputs(mInfo->inputs.size());
for (int i=0; i<inputs.size(); ++i) {
inputs[i] = _Input(mInfo->inputs[i].dim, mInfo->inputs[i].order, mInfo->inputs[i].type);
}
// Load inputs
for (int i=0; i<inputs.size(); ++i) {
auto inputName = inputNames[i];
// Resize
auto shapeIter = inputShape.find(inputName);
if (shapeIter != inputShape.end()) {
auto s = shapeIter->second;
inputs[i] = _Input(s, mInfo->defaultFormat, mInfo->inputs[i].type);
}
auto info = inputs[i]->getInfo();
if (info->type == halide_type_of<float>()){
auto ptr = inputs[i]->writeMap<float>();
LOAD_DATA(float)
} else {
auto floatVar = _Input(info->dim, info->order, halide_type_of<float>());
auto ptr = floatVar->writeMap<float>();
LOAD_DATA(float)
auto temp = _Cast(floatVar, info->type);
inputs[i]->input(temp);
}
inputs[i] = _Convert(inputs[i], mInfo->inputs[i].order);
}
#undef LOAD_DATA
2022-06-10 10:39:50 +08:00
bool modelError = false;
// Module Branch
auto outputs = net->onForward(inputs);
2022-01-04 10:50:40 +08:00
if (outputs.empty()) {
MNN_ERROR("Error in forward\n");
return 0;
}
for (int i=0; i<outputNames.size(); ++i) {
auto name = outputNames[i];
auto v = outputs[i];
auto info = v->getInfo();
if (nullptr == info) {
continue;
}
if (info->order == NC4HW4 && info->dim.size() > 1) {
v = _Convert(v, mInfo->defaultFormat);
}
if (info->type.code != halide_type_float) {
v = _Cast<float>(v);
}
v.fix(VARP::CONSTANT);
outputs[i] = v;
}
if (checkOutput) {
for (int i=0; i<outputNames.size(); ++i) {
auto output = outputs[i];
bool success = compareOutput(output, directName, outputNames[i], mInfo->defaultFormat, i);
if (!success) {
modelError = true;
MNN_ERROR("Error for output %s\n", outputNames[i].c_str());
}
}
}
for (int i=0; i<outputNames.size(); ++i) {
auto name = outputNames[i];
auto v = outputs[i];
auto info = v->getInfo();
std::ostringstream fileNameOs;
fileNameOs << "output/" << i << ".txt";
auto fileName = fileNameOs.str();
MNN_PRINT("Write %s output to %s\n", name.c_str(), fileName.c_str());
std::ofstream _output(fileName.c_str());
auto ptr = v->readMap<float>();
for (int v=0; v<info->size; ++v) {
_output << ptr[v] << "\n";
}
}
2022-01-04 10:50:40 +08:00
// Print module's memory
float memoryInMB = 0.0f;
rtmgr->getInfo(Interpreter::MEMORY, &memoryInMB);
FUNC_PRINT_ALL(memoryInMB, f);
2022-06-10 10:39:50 +08:00
// benchmark. for CPU, op time means calc duration; for others, op time means schedule duration.
int runTime = 0;
if (argc > 5) {
runTime = ::atoi(argv[5]);
}
2022-01-04 10:50:40 +08:00
if (runTime > 0) {
int t = runTime;
std::vector<float> times(t, 0.0f);
2022-06-10 10:39:50 +08:00
for (int i = 0; i < t; ++i) {
Timer _l;
auto out = net->onForward(inputs);
times[i] = _l.durationInUs() / 1000.0f;
2022-06-10 10:39:50 +08:00
}
auto minTime = std::min_element(times.begin(), times.end());
auto maxTime = std::max_element(times.begin(), times.end());
float sum = 0.0f;
for (auto time : times) {
sum += time;
}
MNN_PRINT("Avg= %f ms, min= %f ms, max= %f ms\n", sum / (float)t, *minTime, *maxTime);
}
2022-01-04 10:50:40 +08:00
rtmgr->updateCache();
return 0;
}