mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			458 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ModuleBasic.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2021/10/15.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "MNN_generated.h"
 | |
| #include <MNN/expr/Expr.hpp>
 | |
| #include <MNN/expr/Module.hpp>
 | |
| #include <MNN/expr/ExprCreator.hpp>
 | |
| #include <MNN/AutoTime.hpp>
 | |
| #include "rapidjson/document.h"
 | |
| #include "common/MemoryFormater.h"
 | |
| #include <fstream>
 | |
| #include <sstream>
 | |
| #include <cmath>
 | |
| using namespace MNN::Express;
 | |
| using namespace MNN;
 | |
| 
 | |
| #define DUMP_NUM_DATA(type)                          \
 | |
|     auto data = tensor->host<type>();                \
 | |
|     for (int z = 0; z < outside; ++z) {              \
 | |
|         for (int x = 0; x < width; ++x) {            \
 | |
|             outputOs << data[x + z * width] << "\t"; \
 | |
|         }                                            \
 | |
|         outputOs << "\n";                            \
 | |
|     }
 | |
| 
 | |
| #define DUMP_CHAR_DATA(type)                                           \
 | |
|     auto data = tensor->host<type>();                                  \
 | |
|     for (int z = 0; z < outside; ++z) {                                \
 | |
|         for (int x = 0; x < width; ++x) {                              \
 | |
|             outputOs << static_cast<int>(data[x + z * width]) << "\t"; \
 | |
|         }                                                              \
 | |
|         outputOs << "\n";                                              \
 | |
|     }
 | |
| 
 | |
| static void dumpTensor2File(const Tensor* tensor, const char* file, std::ofstream& orderFile) {
 | |
|     orderFile << file << std::endl;
 | |
|     std::ofstream outputOs(file);
 | |
|     auto type = tensor->getType();
 | |
| 
 | |
|     int dimension = tensor->buffer().dimensions;
 | |
|     int width     = 1;
 | |
|     if (dimension > 1) {
 | |
|         width = tensor->length(dimension - 1);
 | |
|     }
 | |
| 
 | |
|     const int outside = tensor->elementSize() / width;
 | |
| 
 | |
|     const auto dataType  = type.code;
 | |
|     const auto dataBytes = type.bytes();
 | |
| 
 | |
|     if (dataType == halide_type_float) {
 | |
|         DUMP_NUM_DATA(float);
 | |
|     }
 | |
|     if (dataType == halide_type_int && dataBytes == 4) {
 | |
|         DUMP_NUM_DATA(int32_t);
 | |
|     }
 | |
|     if (dataType == halide_type_uint && dataBytes == 1) {
 | |
|         DUMP_CHAR_DATA(uint8_t);
 | |
|     }
 | |
|     if (dataType == halide_type_int && dataBytes == 1) {
 | |
| #ifdef MNN_USE_SSE
 | |
|         auto data = tensor->host<uint8_t>();
 | |
|         for (int z = 0; z < outside; ++z) {
 | |
|             for (int x = 0; x < width; ++x) {
 | |
|                 outputOs << (static_cast<int>(data[x + z * width]) - 128) << "\t";
 | |
|             }
 | |
|             outputOs << "\n";
 | |
|         }
 | |
| #else
 | |
|         DUMP_CHAR_DATA(int8_t);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| std::ofstream gOrderFile;
 | |
| static void _initDebug() {
 | |
|     gOrderFile.open("order.txt");
 | |
|     MNN::TensorCallBackWithInfo beforeCallBack = [&](const std::vector<MNN::Tensor*>& ntensors, const OperatorInfo* info) {
 | |
|         auto opName = info->name();
 | |
|         auto opCopyName = opName;
 | |
|         for (int j = 0; j < opCopyName.size(); ++j) {
 | |
|             if (opCopyName[j] == '/') {
 | |
|                 opCopyName[j] = '_';
 | |
|             }
 | |
|         }
 | |
|         for (int i = 0; i < ntensors.size(); ++i) {
 | |
|             auto ntensor    = ntensors[i];
 | |
|             auto outDimType = ntensor->getDimensionType();
 | |
|             auto expectTensor = new MNN::Tensor(ntensor, outDimType);
 | |
|             ntensor->copyToHostTensor(expectTensor);
 | |
|             std::ostringstream outputFileName;
 | |
|             outputFileName << "output/Input_" << opCopyName << "_" << i;
 | |
|             dumpTensor2File(expectTensor, outputFileName.str().c_str(), gOrderFile);
 | |
| 
 | |
|             delete expectTensor;
 | |
|         }
 | |
|         return true;
 | |
|     };
 | |
|     MNN::TensorCallBackWithInfo callBack = [&](const std::vector<MNN::Tensor*>& ntensors,  const OperatorInfo* info) {
 | |
|         auto opName = info->name();
 | |
|         for (int i = 0; i < ntensors.size(); ++i) {
 | |
|             auto ntensor    = ntensors[i];
 | |
|             auto outDimType = ntensor->getDimensionType();
 | |
|             auto expectTensor = new MNN::Tensor(ntensor, outDimType);
 | |
|             ntensor->copyToHostTensor(expectTensor);
 | |
| 
 | |
|             auto tensor = expectTensor;
 | |
| 
 | |
|             std::ostringstream outputFileName;
 | |
|             auto opCopyName = opName;
 | |
|             for (int j = 0; j < opCopyName.size(); ++j) {
 | |
|                 if (opCopyName[j] == '/') {
 | |
|                     opCopyName[j] = '_';
 | |
|                 }
 | |
|             }
 | |
|             if (tensor->dimensions() == 4) {
 | |
|                 MNN_PRINT("Dimensions: 4, W,H,C,B: %d X %d X %d X %d, OP name %s : %d\n",
 | |
|                         tensor->width(), tensor->height(), tensor->channel(), tensor->batch(), opName.c_str(), i);
 | |
|             } else {
 | |
|                 std::ostringstream oss;
 | |
|                 for (int i = 0; i < tensor->dimensions(); i++) {
 | |
|                     oss << (i ? " X " : "") << tensor->length(i);
 | |
|                 }
 | |
| 
 | |
|                 MNN_PRINT("Dimensions: %d, %s, OP name %s : %d\n", tensor->dimensions(), oss.str().c_str(), opName.c_str(), i);
 | |
|             }
 | |
| 
 | |
|             outputFileName << "output/" << opCopyName << "_" << i;
 | |
|             dumpTensor2File(expectTensor, outputFileName.str().c_str(), gOrderFile);
 | |
| 
 | |
|             delete expectTensor;
 | |
|         }
 | |
|         return true;
 | |
|     };
 | |
|     Express::Executor::getGlobalExecutor()->setCallBack(std::move(beforeCallBack), std::move(callBack));
 | |
| }
 | |
| 
 | |
| static bool compareOutput(VARP output, const std::string& directName, const std::string& name, Dimensionformat dataFormat, int order) {
 | |
| 
 | |
|     auto info = output->getInfo();
 | |
|     auto ptr = output->readMap<float>();
 | |
|     if (info && info->size <= 0) {
 | |
|         MNN_PRINT("skip checking value for zero content tensor %s\n", name.c_str());
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (nullptr == info || nullptr == ptr) {
 | |
|         MNN_ERROR("TESTERROR name:%s, info:%p, ptr:%p. size:%d\n", name.c_str(), info, ptr, info->size);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     std::ifstream outputOrigin;
 | |
|     // First find key
 | |
|     {
 | |
|         std::ostringstream outputFileOs;
 | |
|         outputFileOs << directName << "/" << name <<".txt";
 | |
|         outputOrigin.open(outputFileOs.str().c_str());
 | |
|     }
 | |
|     // Second find order
 | |
|     if (outputOrigin.fail()) {
 | |
|         std::ostringstream outputFileOs;
 | |
|         outputFileOs << directName << "/" << order <<".txt";
 | |
|         outputOrigin.open(outputFileOs.str().c_str());
 | |
|     }
 | |
|     if (outputOrigin.fail()) {
 | |
|         MNN_PRINT("Skip check %s\n", name.c_str());
 | |
|         return true;
 | |
|     }
 | |
|     MNN_PRINT("before compare %s: (", name.c_str());
 | |
|     for (int i=0; i<info->dim.size(); ++i) {
 | |
|         MNN_PRINT("%d, ", info->dim[i]);
 | |
|     }
 | |
|     MNN_PRINT(")\n");
 | |
|     auto targetValue = _Input({info->dim}, info->order, info->type);
 | |
|     auto targetPtr = targetValue->writeMap<float>();
 | |
|     auto outputPtr = output->readMap<float>();
 | |
| #define MNN_IS_INF(x) (fabs(x) == INFINITY)
 | |
| #define MNN_IS_NAN(x) ((x) != (x))
 | |
| 
 | |
|     for (int i=0; i<info->size; ++i) {
 | |
|         outputOrigin >> targetPtr[i];
 | |
|         if (MNN_IS_INF(outputPtr[i]) || MNN_IS_NAN(outputPtr[i])) {
 | |
|             MNN_ERROR("TESTERROR %s value error:%f\n", name.c_str(), outputPtr[i]);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     auto absMax = _ReduceMax(_Abs(targetValue), {});
 | |
|     absMax = _Maximum(absMax, _Scalar<float>(0.0001f));
 | |
|     auto diff = _Abs(targetValue - output);
 | |
|     auto diffAbsMax = _ReduceMax(diff);
 | |
|     auto absMaxV = absMax->readMap<float>()[0];
 | |
|     auto diffAbsMaxV = diffAbsMax->readMap<float>()[0];
 | |
|     if (absMaxV * 0.01f < diffAbsMaxV || MNN_IS_NAN(absMaxV)) {
 | |
|         MNN_ERROR("TESTERROR %s value error : absMaxV:%f - DiffMax %f\n", name.c_str(), absMaxV, diffAbsMaxV);
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| int main(int argc, char *argv[]) {
 | |
|     if (argc < 3) {
 | |
|         MNN_ERROR("Usage: ./ModuleBasic.out ${test.mnn} ${Dir} [runMask] [forwardType] [runLoops] [numberThread] [precision] [cacheFile]\n");
 | |
|         return 0;
 | |
|     }
 | |
|     std::string modelName = argv[1];
 | |
|     std::string directName = argv[2];
 | |
|     MNN_PRINT("Test %s from input info: %s\n", modelName.c_str(), directName.c_str());
 | |
|     rapidjson::Document document;
 | |
|     std::map<std::string, float> inputInfo;
 | |
|     std::map<std::string, std::vector<int>> inputShape;
 | |
|     std::vector<std::string> inputNames;
 | |
|     std::vector<std::string> outputNames;
 | |
|     bool checkOutput = false;
 | |
|     int runMask = 0;
 | |
|     if (argc > 3) {
 | |
|         runMask = atoi(argv[3]);
 | |
|         if (runMask & 1) {
 | |
|             _initDebug();
 | |
|         }
 | |
|     }
 | |
|     bool shapeMutable = true;
 | |
|     {
 | |
|         std::ostringstream jsonNameOs;
 | |
|         jsonNameOs << directName << "/input.json";
 | |
|         std::ifstream fileNames(jsonNameOs.str().c_str());
 | |
|         std::ostringstream output;
 | |
|         output << fileNames.rdbuf();
 | |
|         auto outputStr = output.str();
 | |
|         document.Parse(outputStr.c_str());
 | |
|         if (document.HasParseError()) {
 | |
|             MNN_ERROR("Invalid json\n");
 | |
|             return 0;
 | |
|         }
 | |
|         if (document.HasMember("inputs")) {
 | |
|             auto inputsInfo = document["inputs"].GetArray();
 | |
|             for (auto iter = inputsInfo.begin(); iter !=inputsInfo.end(); iter++) {
 | |
|                 auto obj = iter->GetObject();
 | |
|                 std::string name = obj["name"].GetString();
 | |
|                 inputNames.emplace_back(name);
 | |
|                 MNN_PRINT("%s\n", name.c_str());
 | |
|                 if (obj.HasMember("value")) {
 | |
|                     float value = obj["value"].GetFloat();
 | |
|                     inputInfo.insert(std::make_pair(name, value));
 | |
|                 }
 | |
|                 if (obj.HasMember("shape")) {
 | |
|                     auto dims = obj["shape"].GetArray();
 | |
|                     std::vector<int> shapes;
 | |
|                     for (auto iter = dims.begin(); iter != dims.end(); iter++) {
 | |
|                         shapes.emplace_back(iter->GetInt());
 | |
|                     }
 | |
|                     inputShape.insert(std::make_pair(name, shapes));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (document.HasMember("outputs")) {
 | |
|             checkOutput = true;
 | |
|             auto array = document["outputs"].GetArray();
 | |
|             for (auto iter = array.begin(); iter !=array.end(); iter++) {
 | |
|                 std::string name = iter->GetString();
 | |
|                 MNN_PRINT("output: %s\n", name.c_str());
 | |
|                 outputNames.emplace_back(name);
 | |
|             }
 | |
|         }
 | |
|         if (document.HasMember("shapeMutable")) {
 | |
|             shapeMutable = document["shapeMutable"].GetBool();
 | |
|         }
 | |
|     }
 | |
|     auto type = MNN_FORWARD_CPU;
 | |
|     if (argc > 4) {
 | |
|         type = (MNNForwardType)atoi(argv[4]);
 | |
|         MNN_PRINT("Use extra forward type: %d\n", type);
 | |
|     }
 | |
| 
 | |
|     // Default single thread
 | |
|     int modeNum = 1;
 | |
|     if (argc > 6) {
 | |
|         modeNum = ::atoi(argv[6]);
 | |
|     }
 | |
| 
 | |
|     int precision = BackendConfig::Precision_Normal;
 | |
|     if (argc > 7) {
 | |
|         precision = atoi(argv[7]);
 | |
|     }
 | |
|     const char* cacheFileName = ".tempcache";
 | |
|     if (argc > 8) {
 | |
|         cacheFileName = argv[8];
 | |
|     }
 | |
|     FUNC_PRINT(precision);
 | |
|     FUNC_PRINT_ALL(cacheFileName, s);
 | |
|     // create session
 | |
|     MNN::ScheduleConfig config;
 | |
|     config.type      = type;
 | |
|     /*modeNum means gpuMode for GPU usage, Or means numThread for CPU usage.*/
 | |
|     config.numThread = modeNum;
 | |
|     // If type not fount, let it failed
 | |
|     config.backupType = type;
 | |
|     BackendConfig backendConfig;
 | |
|     // config.path.outputs.push_back("ResizeBilinear_2");
 | |
|     // backendConfig.power = BackendConfig::Power_High;
 | |
|     backendConfig.precision = static_cast<MNN::BackendConfig::PrecisionMode>(precision);
 | |
|     // backendConfig.memory = BackendConfig::Memory_High;
 | |
|     config.backendConfig     = &backendConfig;
 | |
| 
 | |
|     MNN::Express::Module::Config mConfig;
 | |
|     mConfig.shapeMutable = shapeMutable;
 | |
|     std::shared_ptr<Executor::RuntimeManager> rtmgr(Executor::RuntimeManager::createRuntimeManager(config));
 | |
|     rtmgr->setCache(cacheFileName);
 | |
|     if (runMask & 1) {
 | |
|         rtmgr->setMode(Interpreter::Session_Debug);
 | |
|     }
 | |
|     if (runMask & 8) {
 | |
|         rtmgr->setMode(Interpreter::Session_Input_Inside);
 | |
|     }
 | |
|     if (runMask & 16) {
 | |
|         rtmgr->setMode(Interpreter::Session_Backend_Auto);
 | |
|         rtmgr->setHint(Interpreter::MAX_TUNING_NUMBER, 50);
 | |
|     }
 | |
|     std::shared_ptr<Module> net(Module::load(inputNames, outputNames, modelName.c_str(), rtmgr, &mConfig));
 | |
|     if (net == nullptr) {
 | |
|         MNN_PRINT("Error: can't load module\n");
 | |
|         return 0;
 | |
|     }
 | |
|     auto mInfo = net->getInfo();
 | |
| 
 | |
| #define LOAD_DATA(TYPE)\
 | |
|     if (inputInfo.find(inputName) != inputInfo.end()) {\
 | |
|         auto value = inputInfo[inputName];\
 | |
|         for (int i=0; i<info->size; ++i) {\
 | |
|             ptr[i] = value;\
 | |
|         }\
 | |
|     } else {\
 | |
|         std::ostringstream fileNameOs;\
 | |
|         fileNameOs << directName << "/" << inputName << ".txt";\
 | |
|         auto fileName = fileNameOs.str();\
 | |
|         std::ifstream inputOs(fileName.c_str());\
 | |
|         if (inputOs.fail()) {\
 | |
|             MNN_ERROR("TESTERROR Can't open %s\n", fileName.c_str());\
 | |
|             continue;\
 | |
|         }\
 | |
|         for (int i=0; i<info->size; ++i) {\
 | |
|             inputOs >> ptr[i];\
 | |
|         }\
 | |
|     }
 | |
| 
 | |
| 
 | |
|     std::vector<VARP> inputs(mInfo->inputs.size());
 | |
|     for (int i=0; i<inputs.size(); ++i) {
 | |
|         inputs[i] = _Input(mInfo->inputs[i].dim, mInfo->inputs[i].order, mInfo->inputs[i].type);
 | |
|     }
 | |
|     // Load inputs
 | |
|     for (int i=0; i<inputs.size(); ++i) {
 | |
|         auto inputName = inputNames[i];
 | |
|         // Resize
 | |
|         auto shapeIter = inputShape.find(inputName);
 | |
|         if (shapeIter != inputShape.end()) {
 | |
|             auto s = shapeIter->second;
 | |
|             inputs[i] = _Input(s, mInfo->defaultFormat, mInfo->inputs[i].type);
 | |
|         }
 | |
|         auto info = inputs[i]->getInfo();
 | |
|         if (info->type == halide_type_of<float>()){
 | |
|             auto ptr = inputs[i]->writeMap<float>();
 | |
|             LOAD_DATA(float)
 | |
|         } else {
 | |
|             auto floatVar = _Input(info->dim, info->order, halide_type_of<float>());
 | |
|             auto ptr = floatVar->writeMap<float>();
 | |
|             LOAD_DATA(float)
 | |
|             auto temp = _Cast(floatVar, info->type);
 | |
|             inputs[i]->input(temp);
 | |
|         }
 | |
|         inputs[i] = _Convert(inputs[i], mInfo->inputs[i].order);
 | |
|     }
 | |
| #undef LOAD_DATA
 | |
| 
 | |
|     bool modelError = false;
 | |
|     // Module Branch
 | |
|     auto outputs = net->onForward(inputs);
 | |
|     if (outputs.empty()) {
 | |
|         MNN_ERROR("Error in forward\n");
 | |
|         return 0;
 | |
|     }
 | |
|     for (int i=0; i<outputNames.size(); ++i) {
 | |
|         auto name = outputNames[i];
 | |
|         auto v = outputs[i];
 | |
|         auto info = v->getInfo();
 | |
|         if (nullptr == info) {
 | |
|             continue;
 | |
|         }
 | |
|         if (info->order == NC4HW4 && info->dim.size() > 1) {
 | |
|             v = _Convert(v, mInfo->defaultFormat);
 | |
|         }
 | |
|         if (info->type.code != halide_type_float) {
 | |
|             v = _Cast<float>(v);
 | |
|         }
 | |
|         v.fix(VARP::CONSTANT);
 | |
|         outputs[i] = v;
 | |
|     }
 | |
| 
 | |
|     if (checkOutput) {
 | |
|         for (int i=0; i<outputNames.size(); ++i) {
 | |
|             auto output = outputs[i];
 | |
|             bool success = compareOutput(output, directName, outputNames[i], mInfo->defaultFormat, i);
 | |
|             if (!success) {
 | |
|                 modelError = true;
 | |
|                 MNN_ERROR("Error for output %s\n", outputNames[i].c_str());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     for (int i=0; i<outputNames.size(); ++i) {
 | |
|         auto name = outputNames[i];
 | |
|         auto v = outputs[i];
 | |
|         auto info = v->getInfo();
 | |
|         std::ostringstream fileNameOs;
 | |
|         fileNameOs << "output/" << i << ".txt";
 | |
|         auto fileName = fileNameOs.str();
 | |
|         MNN_PRINT("Write %s output to %s\n", name.c_str(), fileName.c_str());
 | |
|         std::ofstream _output(fileName.c_str());
 | |
|         auto ptr = v->readMap<float>();
 | |
|         for (int v=0; v<info->size; ++v) {
 | |
|             _output << ptr[v] << "\n";
 | |
|         }
 | |
|     }
 | |
|     // Print module's memory
 | |
|     float memoryInMB = 0.0f;
 | |
|     rtmgr->getInfo(Interpreter::MEMORY, &memoryInMB);
 | |
|     FUNC_PRINT_ALL(memoryInMB, f);
 | |
| 
 | |
|     // benchmark. for CPU, op time means calc duration; for others, op time means schedule duration.
 | |
|     int runTime = 0;
 | |
|     if (argc > 5) {
 | |
|         runTime = ::atoi(argv[5]);
 | |
|     }
 | |
| 
 | |
|     if (runTime > 0) {
 | |
|         int t = runTime;
 | |
|         std::vector<float> times(t, 0.0f);
 | |
| 
 | |
|         for (int i = 0; i < t; ++i) {
 | |
|             Timer _l;
 | |
|             auto out = net->onForward(inputs);
 | |
|             times[i] = _l.durationInUs() / 1000.0f;
 | |
| 
 | |
|         }
 | |
|         auto minTime = std::min_element(times.begin(), times.end());
 | |
|         auto maxTime = std::max_element(times.begin(), times.end());
 | |
|         float sum    = 0.0f;
 | |
|         for (auto time : times) {
 | |
|             sum += time;
 | |
|         }
 | |
|         MNN_PRINT("Avg= %f ms, min= %f ms, max= %f ms\n", sum / (float)t, *minTime, *maxTime);
 | |
|     }
 | |
|     rtmgr->updateCache();
 | |
|     return 0;
 | |
| }
 | |
| 
 |