MNN/source/shape/ShapeBinaryOp.cpp

89 lines
2.9 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeBinaryOp.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Macro.h"
#include "SizeComputer.hpp"
namespace MNN {
class BinaryOpComputer : public SizeComputer {
public:
static bool outputBool(int operation) {
if (operation == BinaryOpOperation_GREATER_EQUAL) {
return true;
}
if (operation == BinaryOpOperation_GREATER) {
return true;
}
if (operation == BinaryOpOperation_LESS) {
return true;
}
if (operation == BinaryOpOperation_LESS_EQUAL) {
return true;
}
if (operation == BinaryOpOperation_EQUAL) {
return true;
}
return false;
}
virtual bool onComputeSize(const Op* op, const std::vector<Tensor*>& inputs,
2019-04-17 10:49:11 +08:00
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
// set output type & format
auto input0 = inputs[0], input1 = inputs[1], output = outputs[0];
auto &buffer = output->buffer();
2019-04-17 10:49:11 +08:00
const auto opType = op->main_as_BinaryOp()->opType();
if (outputBool(opType)) {
buffer.type = halide_type_of<int32_t>();
2019-04-17 10:49:11 +08:00
} else {
buffer.type = input0->getType();
2019-04-17 10:49:11 +08:00
}
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input0)->dimensionFormat;
if (input0->dimensions() < input1->dimensions()) {
auto temp = input0;
input0 = input1;
input1 = temp;
}
2019-04-17 10:49:11 +08:00
// if scalar input -> just copy the other
if (input1->dimensions() == 0) {
TensorUtils::copyShape(input0, output);
return true;
}
// else if inputs shape equals -> just copy any one
bool sameShape = input0->elementSize() == input1->elementSize();
if (sameShape) {
TensorUtils::copyShape(input0, output);
return true;
}
// else if broadcast NOT supported -> failed
const int maxDimensions = input0->dimensions();
const int diffDimension = input0->dimensions() - input1->dimensions();
// else broadcast
for (int i = maxDimensions-1; i >=0 ; --i) {
auto input0Length = input0->length(i);
auto input1Length = 1;
if (i >= diffDimension) {
input1Length = input1->length(i-diffDimension);
}
if (input0Length != input1Length && input1Length != 1 && input0Length != 1) {
MNN_PRINT("%d, %d\n", input1Length, input0Length);
return false;
}
buffer.dim[i].extent = std::max(input0Length, input1Length);
}
buffer.dimensions = maxDimensions;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(BinaryOpComputer, OpType_BinaryOp);
} // namespace MNN