MNN/source/shape/ShapeBinaryOp.cpp

88 lines
3.0 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeBinaryOp.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <set>
#include "Macro.h"
#include "SizeComputer.hpp"
//#define FORCE_SAME_SHAPE
namespace MNN {
class BinaryOpComputer : public SizeComputer {
public:
virtual bool onComputeSize(const Op* op, const std::vector<Tensor*>& inputs,
2019-04-17 10:49:11 +08:00
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
// set output type & format
static std::set<int> supportedTypes{BinaryOpOperation_GREATER, BinaryOpOperation_GREATER_EQUAL,
BinaryOpOperation_LESS};
auto input0 = inputs[0], input1 = inputs[1], output = outputs[0];
auto &buffer = output->buffer();
2019-04-17 10:49:11 +08:00
const auto opType = op->main_as_BinaryOp()->opType();
if (supportedTypes.find(opType) != supportedTypes.end()) {
buffer.type = halide_type_of<int32_t>();
2019-04-17 10:49:11 +08:00
} else {
buffer.type = input0->getType();
2019-04-17 10:49:11 +08:00
}
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input0)->dimensionFormat;
2019-04-17 10:49:11 +08:00
// if scalar input -> just copy the other
if (input0->dimensions() == 0) {
TensorUtils::copyShape(input1, output);
return true;
}
if (input1->dimensions() == 0) {
TensorUtils::copyShape(input0, output);
return true;
}
// else if inputs shape equals -> just copy any one
2019-04-17 10:49:11 +08:00
#ifdef FORCE_SAME_SHAPE
bool sameShape = true;
for (int i = 0; i < input0->dimensions(); ++i) {
if (input0->length(i) != input1->length(i)) {
sameShape = false;
break;
2019-04-17 10:49:11 +08:00
}
}
2019-04-17 10:49:11 +08:00
#else
bool sameShape = input0->elementSize() == input1->elementSize();
2019-04-17 10:49:11 +08:00
#endif
if (sameShape) {
TensorUtils::copyShape(input0, output);
return true;
}
// else if broadcast NOT supported -> failed
const int maxDimensions = std::max(input0->dimensions(), input1->dimensions());
std::vector<int> dims0(maxDimensions, 1), dims1(maxDimensions, 1);
for (int i = input0->dimensions() - 1, j = maxDimensions - 1; i >= 0; i--, j--) {
dims0[j] = input0->length(i);
}
for (int i = input1->dimensions() - 1, j = maxDimensions - 1; i >= 0; i--, j--) {
dims1[j] = input1->length(i);
}
for (int i = 0; i < maxDimensions; i++) {
if (dims0[i] != dims1[i] && dims0[i] != 1 && dims1[i] != 1) {
return false;
2019-04-17 10:49:11 +08:00
}
}
// else broadcast
for (int i = 0; i < maxDimensions; i++) {
buffer.dim[i].extent = std::max(dims0[i], dims1[i]);
buffer.dim[i].flags = 0;
}
buffer.dimensions = maxDimensions;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(BinaryOpComputer, OpType_BinaryOp);
} // namespace MNN