MNN/source/shape/ShapeTranspose.cpp

45 lines
1.5 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeTranspose.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Macro.h"
#include "SizeComputer.hpp"
#include "TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class TransposeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
const Tensor* input = inputs[0];
Tensor* perm = inputs[1];
const int dims = input->buffer().dimensions;
MNN_ASSERT(dims == perm->buffer().dim[0].extent);
std::vector<int32_t> permutation;
if (perm->getType().code == halide_type_int && 32 == perm->getType().bits) {
2019-04-17 10:49:11 +08:00
for (int i = 0; i < perm->buffer().dim[0].extent; i++) {
permutation.push_back(perm->host<int32_t>()[i]);
}
} else {
MNN_ASSERT(false);
}
outputs[0]->buffer().dimensions = dims;
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
outputs[0]->buffer().type = input->getType();
2019-04-17 10:49:11 +08:00
for (int i = 0; i < dims; ++i) {
const int32_t d = permutation[i];
outputs[0]->buffer().dim[i].extent = input->buffer().dim[d].extent;
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE_INPUTS(TransposeComputer, OpType_Transpose, {1});
2019-04-17 10:49:11 +08:00
} // namespace MNN