| 
									
										
										
										
											2021-04-08 15:34:23 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  ShapeGridSample.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2021/03/24.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "shape/SizeComputer.hpp"
 | 
					
						
							|  |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | class GridSampleSizeComputer : public SizeComputer { | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor *> &outputs) const override { | 
					
						
							|  |  |  |         // https://pytorch.org/docs/1.7.1/nn.functional.html?highlight=grid_sample#torch.nn.functional.grid_sample
 | 
					
						
							|  |  |  |         // inputs[0] is input, inputs[1] is grid
 | 
					
						
							| 
									
										
										
										
											2023-12-04 11:12:20 +08:00
										 |  |  |         MNN_ASSERT(2 <= inputs.size()); | 
					
						
							| 
									
										
										
										
											2021-04-08 15:34:23 +08:00
										 |  |  |         MNN_ASSERT(1 == outputs.size()); | 
					
						
							| 
									
										
										
										
											2023-12-04 11:12:20 +08:00
										 |  |  |         auto &ibInput0 = inputs[0]->buffer(); | 
					
						
							|  |  |  |         auto &ob = outputs[0]->buffer(); | 
					
						
							|  |  |  |         ob.type = ibInput0.type; | 
					
						
							|  |  |  |         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe( | 
					
						
							|  |  |  |                 inputs[0])->dimensionFormat; | 
					
						
							|  |  |  |         if (inputs.size() > 2) { | 
					
						
							|  |  |  |             // For Grad, just copy the shape
 | 
					
						
							|  |  |  |             ob.dimensions = inputs[2]->length(0); | 
					
						
							|  |  |  |             auto shapePtr = inputs[2]->host<int>(); | 
					
						
							|  |  |  |             for (int i=0; i<ob.dimensions; ++i) { | 
					
						
							|  |  |  |                 ob.dim[i].extent = shapePtr[i]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             return true; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-24 18:30:05 +08:00
										 |  |  |         int input_dim = inputs[0]->buffer().dimensions; | 
					
						
							|  |  |  |         int grid_dim = inputs[1]->buffer().dimensions; | 
					
						
							|  |  |  |         MNN_ASSERT((4 == input_dim && 4 == grid_dim) || (5 == input_dim && 5 == grid_dim)); | 
					
						
							| 
									
										
										
										
											2022-12-30 15:18:58 +08:00
										 |  |  |         if (inputs[0]->buffer().dim[0].extent != inputs[1]->buffer().dim[0].extent) { | 
					
						
							|  |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2022-06-24 18:30:05 +08:00
										 |  |  |         MNN_ASSERT(grid_dim - 2 == inputs[1]->buffer().dim[grid_dim - 1].extent); | 
					
						
							| 
									
										
										
										
											2021-04-08 15:34:23 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         auto &ibInput1 = inputs[1]->buffer(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         ob.dimensions = ibInput1.dimensions; | 
					
						
							|  |  |  |         ob.dim[0].extent = ibInput0.dim[0].extent; | 
					
						
							|  |  |  |         ob.dim[1].extent = ibInput0.dim[1].extent; | 
					
						
							|  |  |  |         ob.dim[2].extent = ibInput1.dim[1].extent; | 
					
						
							|  |  |  |         ob.dim[3].extent = ibInput1.dim[2].extent; | 
					
						
							| 
									
										
										
										
											2022-06-24 18:30:05 +08:00
										 |  |  |         if (grid_dim == 5) { | 
					
						
							|  |  |  |             ob.dim[4].extent = ibInput1.dim[3].extent; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-04-08 15:34:23 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual float onComputeFlops(const MNN::Op *op, const std::vector<Tensor *> &inputs, | 
					
						
							|  |  |  |                                  const std::vector<Tensor *> &outputs) const override { | 
					
						
							|  |  |  |         auto gridSampleParam = op->main_as_GridSample(); | 
					
						
							|  |  |  |         if (gridSampleParam->mode() == MNN::SampleMode_BILINEAR) { | 
					
						
							|  |  |  |             return 4 * SizeComputer::onComputeFlops(op, inputs, outputs); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return SizeComputer::onComputeFlops(op, inputs, outputs); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-12-04 11:12:20 +08:00
										 |  |  | REGISTER_SHAPE_INPUTS(GridSampleSizeComputer, OpType_GridSample, {2}); | 
					
						
							| 
									
										
										
										
											2021-04-08 15:34:23 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | } // namespace MNN
 |