mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			71 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeGridSample.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2021/03/24.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "shape/SizeComputer.hpp"
 | |
| #include "core/Macro.h"
 | |
| 
 | |
| namespace MNN {
 | |
| class GridSampleSizeComputer : public SizeComputer {
 | |
|     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                const std::vector<Tensor *> &outputs) const override {
 | |
|         // https://pytorch.org/docs/1.7.1/nn.functional.html?highlight=grid_sample#torch.nn.functional.grid_sample
 | |
|         // inputs[0] is input, inputs[1] is grid
 | |
|         MNN_ASSERT(2 <= inputs.size());
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
|         auto &ibInput0 = inputs[0]->buffer();
 | |
|         auto &ob = outputs[0]->buffer();
 | |
|         ob.type = ibInput0.type;
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(
 | |
|                 inputs[0])->dimensionFormat;
 | |
|         if (inputs.size() > 2) {
 | |
|             // For Grad, just copy the shape
 | |
|             ob.dimensions = inputs[2]->length(0);
 | |
|             auto shapePtr = inputs[2]->host<int>();
 | |
|             for (int i=0; i<ob.dimensions; ++i) {
 | |
|                 ob.dim[i].extent = shapePtr[i];
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         int input_dim = inputs[0]->buffer().dimensions;
 | |
|         int grid_dim = inputs[1]->buffer().dimensions;
 | |
|         MNN_ASSERT((4 == input_dim && 4 == grid_dim) || (5 == input_dim && 5 == grid_dim));
 | |
|         if (inputs[0]->buffer().dim[0].extent != inputs[1]->buffer().dim[0].extent) {
 | |
|             return false;
 | |
|         }
 | |
|         MNN_ASSERT(grid_dim - 2 == inputs[1]->buffer().dim[grid_dim - 1].extent);
 | |
| 
 | |
|         auto &ibInput1 = inputs[1]->buffer();
 | |
| 
 | |
|         ob.dimensions = ibInput1.dimensions;
 | |
|         ob.dim[0].extent = ibInput0.dim[0].extent;
 | |
|         ob.dim[1].extent = ibInput0.dim[1].extent;
 | |
|         ob.dim[2].extent = ibInput1.dim[1].extent;
 | |
|         ob.dim[3].extent = ibInput1.dim[2].extent;
 | |
|         if (grid_dim == 5) {
 | |
|             ob.dim[4].extent = ibInput1.dim[3].extent;
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     virtual float onComputeFlops(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | |
|                                  const std::vector<Tensor *> &outputs) const override {
 | |
|         auto gridSampleParam = op->main_as_GridSample();
 | |
|         if (gridSampleParam->mode() == MNN::SampleMode_BILINEAR) {
 | |
|             return 4 * SizeComputer::onComputeFlops(op, inputs, outputs);
 | |
|         }
 | |
| 
 | |
|         return SizeComputer::onComputeFlops(op, inputs, outputs);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE_INPUTS(GridSampleSizeComputer, OpType_GridSample, {2});
 | |
| 
 | |
| } // namespace MNN
 |