MNN/source/backend/opencl/execution/buffer/ConvBufLowMemoryExecution.cpp

728 lines
41 KiB
C++
Raw Normal View History

2023-12-27 17:26:44 +08:00
// ConvBufLowMemoryExecution.cpp
//
// Created by MNN on 2023/10/12.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef MNN_LOW_MEMORY
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "ConvBufLowMemoryExecution.hpp"
// #define LOG_VERBOSE
namespace MNN {
namespace OpenCL {
// set mDequantScale mDequantOffset mNumQuantBit mFilterDataPtr from mConv2dParams
void ConvBufLowMemoryExecution::getInfoFromOpLowMemory(std::shared_ptr<ConvolutionCommon::Int8Common> & quanCommon) {
2024-04-19 11:58:21 +08:00
quanCommon = ConvolutionCommon::load(mResource->mConv2dParams, this->backend(), false, true);
2024-05-11 19:17:02 +08:00
if (mResource->mConv2dParams->quanParameter() != nullptr) {
2023-12-27 17:26:44 +08:00
mLowMemoryFlag = true;
} else {
MNN_ERROR("Conv buf low memory init error.\n");
MNN_ASSERT(false);
}
2024-07-04 11:53:45 +08:00
mResource->mInputChannel = quanCommon->weight.size() / (mResource->mKernelWidth * mResource->mKernelHeight * mResource->mOutputChannel);
// set mResource->mNumQuantBit
if(quanCommon->canUseInt4){
mResource->mNumQuantBit = 4;
}else{
mResource->mNumQuantBit = 8;
}
2023-12-27 17:26:44 +08:00
// src of alpha in CPU
float * dequantAlpha = quanCommon->alpha.get();
2024-07-04 11:53:45 +08:00
int totalCount = quanCommon->alpha.size();
if (quanCommon->asymmetric) {
totalCount /= 2;
}
2024-04-19 11:58:21 +08:00
int numAlpha = mResource->mOutputChannel;
2024-07-04 11:53:45 +08:00
mResource->mBlockSize = totalCount / numAlpha;
2023-12-27 17:26:44 +08:00
// set mDequantScale mDequantOffset
2024-07-04 11:53:45 +08:00
int numAlphaPack = ROUND_UP(numAlpha, 4);
2024-05-11 19:17:02 +08:00
2024-07-04 11:53:45 +08:00
mResource->dequantScaleOffset.reset(Tensor::createDevice<int32_t>({mResource->mBlockSize, numAlphaPack, 2}));
mOpenCLBackend->onAcquireBuffer(mResource->dequantScaleOffset.get(), Backend::STATIC);
cl::Buffer &dequantScaleOffsetBuffer = openCLBuffer(mResource->dequantScaleOffset.get());
2023-12-27 17:26:44 +08:00
// transfer data from src in cpu to dst in gpu
2024-05-11 19:17:02 +08:00
int fpBytes = mOpenCLBackend->fpBytes();
2024-07-04 11:53:45 +08:00
cl_int resBias, resScaleOffset;
2024-05-11 19:17:02 +08:00
2024-07-04 11:53:45 +08:00
int mapSize = mResource->mBlockSize * numAlphaPack * sizeof(int32_t) * 2;
void * dequantScaleOffsetBufferMap = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(dequantScaleOffsetBuffer, true, CL_MAP_WRITE, 0, mapSize, nullptr, nullptr, &resScaleOffset);
// mBlockSize % 4 need equal 0
if (dequantScaleOffsetBufferMap != nullptr && resScaleOffset == CL_SUCCESS) {
2024-05-11 19:17:02 +08:00
if (quanCommon->asymmetric) {
for (int i = 0; i < numAlpha; ++i) {
2024-07-04 11:53:45 +08:00
auto srcZ = dequantAlpha + i * mResource->mBlockSize * 2;
for(int j = 0; j < mResource->mBlockSize; ++j){
float o = srcZ[2*j+0];
float s = srcZ[2*j+1];
((float *)dequantScaleOffsetBufferMap)[(j * numAlphaPack + i) * 2] = s;
((float *)dequantScaleOffsetBufferMap)[(j * numAlphaPack + i) * 2 + 1] = o;
}
2023-12-27 17:26:44 +08:00
}
} else {
2024-05-11 19:17:02 +08:00
for (int i = 0; i < numAlpha; ++i) {
2024-07-04 11:53:45 +08:00
auto srcZ = dequantAlpha + i * mResource->mBlockSize;
for(int j = 0; j < mResource->mBlockSize; ++j){
((float *)dequantScaleOffsetBufferMap)[(j * numAlphaPack + i) * 2] = srcZ[j];
((float *)dequantScaleOffsetBufferMap)[(j * numAlphaPack + i) * 2 + 1] = 0.0f;
}
2023-12-27 17:26:44 +08:00
}
}
} else {
MNN_ERROR("Map error dequantBufferMap == nullptr \n");
MNN_ASSERT(false);
}
2024-07-04 11:53:45 +08:00
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(dequantScaleOffsetBuffer, dequantScaleOffsetBufferMap);
2023-12-27 17:26:44 +08:00
// set mFilterDataPtr
mFilterDataPtr = (void *)quanCommon->weight.get();
}
2024-07-04 11:53:45 +08:00
bool ConvBufLowMemoryExecution::convertToQuantWeight1x1Buffer(cl::Buffer input, int pack) {
#ifdef LOG_VERBOSE
MNN_PRINT("start convertToQuantWeight1x1Buffer !\n");
#endif
auto runtime = mOpenCLBackend->getOpenCLRuntime();
std::string kernelName = "conv2d_1x1_weight_quant_buffer";
if(mResource->mUseImage){
kernelName = "conv2d_1x1_weight_quant_image";
}
std::set<std::string> buildOptions;
if (mResource->mNumQuantBit == 8) {
buildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT8");
} else if (mResource->mNumQuantBit == 4){
// int4 case
buildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT4");
} else {/* More types to be supported. */}
if(mResource->mInputChannel % pack != 0){
buildOptions.emplace("-DINPUT_CHANNEL_LEAVE");
}
mBufferToConv1x1Kernel = runtime->buildKernelWithCache("buffer_convert_quant", kernelName, buildOptions);
auto kernel = mBufferToConv1x1Kernel->get();
uint32_t gws[2] = {static_cast<uint32_t>(UP_DIV(mResource->mInputChannel, pack)), static_cast<uint32_t>(mResource->mOutputChannel)};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel.setArg(idx++, gws[0]);
ret |= kernel.setArg(idx++, gws[1]);
ret |= kernel.setArg(idx++, input);
if(mResource->mUseImage){
ret |= kernel.setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= kernel.setArg(idx++, *mResource->mKernelBuffer.get());
}
ret |= kernel.setArg(idx++, mResource->mInputChannel);
ret |= kernel.setArg(idx++, mResource->mOutputChannel);
MNN_CHECK_CL_SUCCESS(ret, "setArg convertToQuantWeight1x1Buffer");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mBufferToConv1x1Kernel));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(gws[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(kernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
cl::NDRange(lws[0], lws[1]), nullptr, &event);
event.wait();
MNN_CHECK_CL_SUCCESS(res, "convertToQuantWeight1x1Buffer");
#ifdef LOG_VERBOSE
MNN_PRINT("end convertToQuantWeight1x1Buffer !\n");
#endif
return true;
}
2023-12-27 17:26:44 +08:00
// set mKernelBuffer for the 1x1 kernels
void ConvBufLowMemoryExecution::set1x1WeightLowMemory(int packCout, int packCin, void * filterDataPtr, std::shared_ptr<ConvolutionCommon::Int8Common> & quanCommon) {
cl_int res;
2024-05-11 19:17:02 +08:00
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>({ROUND_UP(mResource->mOutputChannel, packCout), ROUND_UP(mResource->mInputChannel, packCin), mResource->mKernelWidth, mResource->mKernelHeight}));
2023-12-27 17:26:44 +08:00
size_t buffer_size = filterBuffer->usize() / sizeof(float);
2024-07-04 11:53:45 +08:00
size_t cpy_size = mResource->mOutputChannel * mResource->mInputChannel * mResource->mKernelWidth * mResource->mKernelHeight * sizeof(char);
2023-12-27 17:26:44 +08:00
float *dequantAlpha = quanCommon->alpha.get();
2024-07-04 11:53:45 +08:00
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
void *mapPtr = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &res);
if(mapPtr != nullptr && res == CL_SUCCESS){
::memcpy(mapPtr, filterDataPtr, cpy_size);
} else {
MNN_ERROR("set1x1WeightLowMemory: Map error ptrCL == nullptr \n");
MNN_ASSERT(false);
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, mapPtr);
2023-12-27 17:26:44 +08:00
// shared part for all cases
2024-07-04 11:53:45 +08:00
if (mResource->mNumQuantBit == 8) {
2023-12-27 17:26:44 +08:00
// int8 case
buffer_size *= sizeof(int8_t);
2024-07-04 11:53:45 +08:00
} else if (mResource->mNumQuantBit == 4){
2023-12-27 17:26:44 +08:00
// int4 case
buffer_size /= 2;
} else {/* More types to be supported. */}
2024-05-11 19:17:02 +08:00
// Use Image load weights
if(UP_DIV(mResource->mInputChannel, packCin) <= 16384 && ROUND_UP(mResource->mOutputChannel, packCout) <= 16384){
mResource->mUseImage = true;
}
if(mResource->mUseImage) {
2024-07-04 11:53:45 +08:00
if(mResource->mNumQuantBit == 4){
2024-05-11 19:17:02 +08:00
packCin *= 2;
}
size_t w = ROUND_UP(mResource->mOutputChannel, packCout);
size_t h = UP_DIV(mResource->mInputChannel, packCin);
2024-07-04 11:53:45 +08:00
mResource->mKernelImage.reset(new cl::Image2D(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE, cl::ImageFormat(CL_RGBA, CL_SIGNED_INT32), w, h, 0, nullptr, &res));
2024-05-11 19:17:02 +08:00
if (nullptr == mResource->mKernelImage.get() || res != CL_SUCCESS) {
2024-07-04 11:53:45 +08:00
MNN_ERROR("Alloc Image %d x %d error, code:%d \n", (int)w, (int)h, (int)res);
2024-05-11 19:17:02 +08:00
}
} else{
mResource->mKernelBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size));
}
2024-07-04 11:53:45 +08:00
convertToQuantWeight1x1Buffer(filterBufferCL, packCin);
2023-12-27 17:26:44 +08:00
}
// set mFilter for the general kernels
void ConvBufLowMemoryExecution::setGeneralWeightLowMemory(void* filterDataPtr, std::shared_ptr<ConvolutionCommon::Int8Common> & quanCommon) {
if (filterDataPtr != nullptr) {
2024-04-19 11:58:21 +08:00
std::vector<int> filterImageShape{ROUND_UP(mResource->mInputChannel, 4), (UP_DIV(mResource->mOutputChannel, 4) * mResource->mKernelWidth * mResource->mKernelHeight)};
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>({mResource->mOutputChannel, ROUND_UP(mResource->mInputChannel, 4), mResource->mKernelWidth, mResource->mKernelHeight}));
2023-12-27 17:26:44 +08:00
// int buffer_size = filterBuffer->elementSize();
size_t buffer_size = filterBuffer->usize() / sizeof(float);
buffer_size *= sizeof(int8_t);
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
float *dequantAlpha = quanCommon->alpha.get();
// map and pack data from filterDataPtr
cl_int res;
auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &res);
if(ptrCL != nullptr && res == CL_SUCCESS) {
::memset(ptrCL, 0, buffer_size);
2024-02-29 16:21:40 +08:00
const int copy_size = mResource->mKernelWidth * mResource->mKernelHeight * sizeof(int8_t);
2024-04-19 11:58:21 +08:00
for(int oc=0; oc<mResource->mOutputChannel; oc++) {
2023-12-27 17:26:44 +08:00
int ic = 0;
2024-04-19 11:58:21 +08:00
for(; ic<mResource->mInputChannel; ic++) {
::memcpy((int8_t *)ptrCL + (oc * ROUND_UP(mResource->mInputChannel, 4) + ic) * mResource->mKernelWidth * mResource->mKernelHeight, ((int8_t *)filterDataPtr) + (oc * mResource->mInputChannel + ic) * mResource->mKernelWidth * mResource->mKernelHeight, copy_size);
2023-12-27 17:26:44 +08:00
}
}
} else {
MNN_ERROR("setGeneralWeightLowMemory: Map error ptrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
// convert to NC4HW4
2024-07-04 11:53:45 +08:00
if (mResource->mNumQuantBit == 8) {
2023-12-27 17:26:44 +08:00
// ROUND_UP(IC, 4), UP_DIV(OC, 4) * mKernelWidth * mKernelHeight
2024-04-19 11:58:21 +08:00
mResource->mFilter.reset(Tensor::createDevice<int8_t>({1, filterImageShape[1], 1, 4 * filterImageShape[0]}));
mOpenCLBackend->onAcquireBuffer(mResource->mFilter.get(), Backend::STATIC);
2023-12-27 17:26:44 +08:00
MNN::OpenCL::BufferConvertor bufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
// filterBuffer shape: {OC, ROUND_UP(IC, 4), mKernelWidth, mKernelHeight}
2024-07-04 11:53:45 +08:00
bufferConvertor.convertToNC4HW4Buffer(filterBuffer.get(), MNN::OpenCL::CONV2D_FILTER, mResource->mFilter.get(), false, true, mLowMemoryFlag, mResource->mNumQuantBit);
} else if (mResource->mNumQuantBit == 4){
2023-12-27 17:26:44 +08:00
// ROUND_UP(IC, 4), UP_DIV(OC, 4) * mKernelWidth * mKernelHeight
// For int4 case, data stored in mFilter should be uint8_t,
// while "Tensor::createDevice<uint8_t>" occupies more memory than "Tensor::createDevice<int8_t>".
// Therefore, we use "Tensor::createDevice<int8_t>" currently, leaving "Tensor::createDevice<uint8_t>" to be supported.
2024-04-19 11:58:21 +08:00
mResource->mFilter.reset(Tensor::createDevice<int8_t>({1, filterImageShape[1], 1, 2 * filterImageShape[0]}));
mOpenCLBackend->onAcquireBuffer(mResource->mFilter.get(), Backend::STATIC);
2023-12-27 17:26:44 +08:00
MNN::OpenCL::BufferConvertor bufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
// filterBuffer shape: {OC, ROUND_UP(IC, 4), mKernelWidth, mKernelHeight}
2024-07-04 11:53:45 +08:00
bufferConvertor.convertToNC4HW4Buffer(filterBuffer.get(), MNN::OpenCL::CONV2D_FILTER, mResource->mFilter.get(), false, true, mLowMemoryFlag, mResource->mNumQuantBit);
2023-12-27 17:26:44 +08:00
} else {/* More types to be supported. */}
} else {
MNN_ERROR("GetConvParams Error: filterDataPtr == nullptr. \n");
MNN_ASSERT(false);
}
}
// select the fastest kernel for the general cases by tuning
void ConvBufLowMemoryExecution::tuneGeneralCaseLowMemory(Tensor * input, Tensor * output) {
2024-04-19 11:58:21 +08:00
auto &unit = mUnits[0];
2023-12-27 17:26:44 +08:00
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int height = outputShape.at(1);
const int width = outputShape.at(2);
const int outChannel = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
const int inputChannels = inputShape.at(3);
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
2024-07-04 11:53:45 +08:00
const int blockDim = mResource->mInputChannel / mResource->mBlockSize;
2024-04-19 11:58:21 +08:00
std::string info = std::to_string(inputChannels) + "_" + std::to_string(outChannel) + "_" + std::to_string(mResource->mKernelHeight) + "_" + std::to_string(mResource->mKernelWidth) + "_" + std::to_string(mResource->mStrides[0]) + "_" + std::to_string(mResource->mStrides[1]) + "_" + std::to_string(mResource->mDilations[0]) + "_" + std::to_string(mResource->mDilations[1]);
2023-12-27 17:26:44 +08:00
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {height, width};
2024-02-29 16:21:40 +08:00
int kernelShape[2] = {mResource->mKernelHeight, mResource->mKernelWidth};
int strideShape[2] = {mResource->mStrides[0], mResource->mStrides[1]};
2023-12-27 17:26:44 +08:00
int paddingShape[2] = {mPaddings[0], mPaddings[1]};
2024-02-29 16:21:40 +08:00
int dilationShape[2] = {mResource->mDilations[0], mResource->mDilations[1]};
2023-12-27 17:26:44 +08:00
// {"conv_2d_c4h1w2", "conv_2d_c4h1w1", "conv_2d_c8h1w1", "conv_2d_c4h1w4", "conv_2d_c8h2w1", "conv_2d_c4h4w1"};
const int total_kernel = 7;
2024-04-19 11:58:21 +08:00
std::string kernelName[total_kernel] = {"conv_2d_int_c4h1w1", "conv_2d_int_c4h1w2", "conv_2d_int_c4h4w1", "conv_2d_int_c8h2w1", "conv_2d_int_c8h4w1", "conv_2d_int_c4h1w4", "conv_2d_int_c8h1w4"};
2023-12-27 17:26:44 +08:00
int itemC[total_kernel] = {4, 4, 4, 8, 8, 4, 8};
int itemH[total_kernel] = {1, 1, 4, 2, 4, 1, 1};
int itemW[total_kernel] = {1, 2, 1, 1, 1, 4, 4};
int actual_kernel = total_kernel;
2024-04-19 11:58:21 +08:00
std::shared_ptr<KernelWrap> kernel[total_kernel];
2023-12-27 17:26:44 +08:00
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
// MNN_PRINT("Checking kernel %d.\n", knlCheck);
for (int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
2024-04-19 11:58:21 +08:00
std::set<std::string> buildOption = mResource->mBuildOptions;
2023-12-27 17:26:44 +08:00
if(outputShape.at(3) % itemC[knl_idx] != 0){
buildOption.emplace("-DCHANNEL_LEAVE");
}
if((outputShape.at(2) % itemW[knl_idx]) != 0 || (outputShape.at(1) % itemH[knl_idx]) != 0){
buildOption.emplace("-DBLOCK_LEAVE");
}
2024-07-04 11:53:45 +08:00
if(inputChannels % 4 != 0){
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
}
2024-04-19 11:58:21 +08:00
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_int_buf", kernelName[knl_idx], buildOption);
2023-12-27 17:26:44 +08:00
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * UP_DIV(outputShape.at(1), itemH[knl_idx]))};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(input));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(output));
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= kernel[knl_idx]->get().setArg(idx++, inputChannels);
ret |= kernel[knl_idx]->get().setArg(idx++, inputChannelBlocks);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(strideShape), strideShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(dilationShape), dilationShape);
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(width, itemW[knl_idx]));
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(outChannel, 4));
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(height, itemH[knl_idx]));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, blockDim);
2023-12-27 17:26:44 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg ConvBufLowMemory Kernel Select");
std::pair<std::vector<uint32_t>, int> retTune;
2024-07-04 11:53:45 +08:00
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[knl_idx] + info, kernel[knl_idx]);
2023-12-27 17:26:44 +08:00
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
}
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
2024-04-19 11:58:21 +08:00
std::set<std::string> buildOption = mResource->mBuildOptions;
2023-12-27 17:26:44 +08:00
if(outputShape.at(3) % itemC[min_index] != 0){
buildOption.emplace("-DCHANNEL_LEAVE");
}
if((outputShape.at(2) % itemW[min_index]) != 0 || (outputShape.at(1) % itemH[min_index]) != 0){
buildOption.emplace("-DBLOCK_LEAVE");
}
2024-07-04 11:53:45 +08:00
if(inputChannels % 4 != 0){
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
}
2024-04-19 11:58:21 +08:00
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_int_buf", kernelName[min_index], buildOption);
2023-12-27 17:26:44 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= unit.kernel->get().setArg(idx++, inputChannels);
ret |= unit.kernel->get().setArg(idx++, inputChannelBlocks);
ret |= unit.kernel->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(strideShape), strideShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(dilationShape), dilationShape);
ret |= unit.kernel->get().setArg(idx++, UP_DIV(width, itemW[min_index]));
ret |= unit.kernel->get().setArg(idx++, UP_DIV(outChannel, 4));
ret |= unit.kernel->get().setArg(idx++, UP_DIV(height, itemH[min_index]));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, blockDim);
2023-12-27 17:26:44 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg ConvBufLowMemory");
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
2023-12-27 17:26:44 +08:00
return;
}
void ConvBufLowMemoryExecution::tuneGemmLowMemory(Tensor * input, Tensor * output) {
2024-04-19 11:58:21 +08:00
auto &unit = mUnits[0];
2023-12-27 17:26:44 +08:00
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int outChannel = outputShape.at(3);
const int inputChannels = inputShape.at(3);
const int batch = outputShape.at(0);
2024-04-19 11:58:21 +08:00
const int height = outputShape.at(1);
const int width = outputShape.at(2);
2023-12-27 17:26:44 +08:00
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
const int outputChannelBlocks = UP_DIV(outChannel, 4);
2024-07-04 11:53:45 +08:00
const int blockNum = mResource->mBlockSize;
const int blockDim = mResource->mInputChannel / mResource->mBlockSize;
2024-05-11 19:17:02 +08:00
2024-04-19 11:58:21 +08:00
int global_y = batch * height;
2024-05-11 19:17:02 +08:00
const int total_kernel = 5;
std::string kernelName[total_kernel] = {"gemm_conv_c1_buf", "gemm_conv_c2_buf", "gemm_conv_c4_buf", "gemm_conv_c1_image", "gemm_conv_c2_image"};
int itemC[total_kernel] = {1, 2, 4, 1, 2};
2024-04-19 11:58:21 +08:00
int actual_kernel = total_kernel;
std::shared_ptr<KernelWrap> kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
std::set<std::string> buildOption = mResource->mBuildOptions;
if(width == 1 && height == 1){
buildOption.emplace("-DWIDTH_HEIGHT_1");
}
2024-05-11 19:17:02 +08:00
2024-07-04 11:53:45 +08:00
if(blockDim % 16 != 0){
2024-04-19 11:58:21 +08:00
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
2024-07-04 11:53:45 +08:00
} else if (mResource->mUseImage && mResource->mNumQuantBit == 4 && blockDim % 32 != 0) {
2024-05-11 19:17:02 +08:00
// Image weight-int4 use load32
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
2024-04-19 11:58:21 +08:00
}
std::string info = std::to_string(inputChannels) + "_" + std::to_string(outChannel);
2024-05-11 19:17:02 +08:00
if(batch > 1){
2024-06-03 20:09:34 +08:00
global_y = UP_DIV(batch, 4) * height;
buildOption.emplace("-DBACTH_BLOCK4");
info += "_BATCH_BLOCK4";
2024-05-11 19:17:02 +08:00
}
int knl_idx = 0;
actual_kernel = 3;
if(mResource->mUseImage){
knl_idx = 3;
actual_kernel = total_kernel;
}
for (; knl_idx < actual_kernel; knl_idx++) {
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemv_conv1x1_buf", kernelName[knl_idx], buildOption);
2024-04-19 11:58:21 +08:00
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outChannel, itemC[knl_idx]) * width), static_cast<uint32_t>(global_y)};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(input));
2024-05-11 19:17:02 +08:00
if(mResource->mUseImage){
ret |= kernel[knl_idx]->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= kernel[knl_idx]->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(output));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(inputChannelBlocks));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, inputChannels);
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(batch));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(height));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(width));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(blockNum));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(blockDim));
2024-05-11 19:17:02 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg gemv_conv1x1_buf Kernel Select");
2024-04-19 11:58:21 +08:00
std::pair<std::vector<uint32_t>, int> retTune;
2024-07-04 11:53:45 +08:00
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[knl_idx] + info, kernel[knl_idx]);
2024-04-19 11:58:21 +08:00
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
2023-12-27 17:26:44 +08:00
}
2024-04-19 11:58:21 +08:00
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
2024-05-11 19:17:02 +08:00
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemv_conv1x1_buf", kernelName[min_index], buildOption);
2024-04-19 11:58:21 +08:00
//MNN_PRINT("Kernel is %d.\n", min_index);
2023-12-27 17:26:44 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
2024-05-11 19:17:02 +08:00
if(mResource->mUseImage){
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannelBlocks));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannels));
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(batch));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(height));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(width));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockNum));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockDim));
2024-05-11 19:17:02 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg gemv_conv1x1_buf");
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
2023-12-27 17:26:44 +08:00
return;
}
2024-07-04 11:53:45 +08:00
void ConvBufLowMemoryExecution::tuneGemvBatchLowMemory(Tensor * input, Tensor * output) {
mUnits.resize(3);
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int outChannel = outputShape.at(3);
const int inputChannels = inputShape.at(3);
const int batch = outputShape.at(0);
const int width_height = outputShape.at(1) * outputShape.at(2);
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
const int outputChannelBlocks = UP_DIV(outChannel, 4);
const int blockNum = mResource->mBlockSize;
const int blockDim = mResource->mInputChannel / mResource->mBlockSize;
int global_y = UP_DIV(batch, 4) * width_height;
const int total_kernel = 5;
std::string kernelName[total_kernel] = {"gemm_b4_c1_buf", "gemm_b4_c2_buf", "gemm_b4_c4_buf", "gemm_b4_c1_image", "gemm_b4_c2_image"};
int itemC[total_kernel] = {1, 2, 4, 1, 2};
int actual_kernel = total_kernel;
std::shared_ptr<KernelWrap> kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
std::set<std::string> buildOption = mResource->mBuildOptions;
if(blockDim % 16 != 0){
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
} else if (mResource->mUseImage && mResource->mNumQuantBit == 4 && blockDim % 32 != 0) {
// Image weight-int4 use load32
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
}
std::string info = std::to_string(inputChannels) + "_" + std::to_string(outChannel);
// mResource->mInputChannel ROUND_UP to blockDim, avoid gemm overstep
mConvGemmInpTensor.reset(Tensor::createDevice<float>({ROUND_UP(batch, 4) * ROUND_UP(ROUND_UP(mResource->mInputChannel, 4), blockDim) * width_height}));
mConvGemmOutTensor.reset(Tensor::createDevice<float>({ROUND_UP(batch, 4) * ROUND_UP(mResource->mOutputChannel, 4) * width_height}));
mOpenCLBackend->onAcquireBuffer(mConvGemmInpTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mConvGemmOutTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mConvGemmOutTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mConvGemmInpTensor.get(), Backend::DYNAMIC);
// reshape n*c/4*4*hw -> n/4*hw*c*4
{
auto &unit = mUnits[0];
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(mResource->mInputChannel, 4)), static_cast<uint32_t>(UP_DIV(batch, 4)), static_cast<uint32_t>(width_height)};
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_quant_batch_buf", "reshape_nchw4_nhwc4", buildOption);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(unit.kernel));
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmInpTensor.get()));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(width_height));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(batch));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannels));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannelBlocks));
MNN_CHECK_CL_SUCCESS(ret, "setArg reshape_nc4_cn4");
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), "reshape_nchw4_nhwc4", unit.kernel).first;
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
}
// gemm
{
auto &unit = mUnits[1];
int knl_idx = 0;
actual_kernel = 3;
if(mResource->mUseImage){
knl_idx = 3;
actual_kernel = total_kernel;
}
for (; knl_idx < actual_kernel; knl_idx++) {
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_quant_batch_buf", kernelName[knl_idx], buildOption);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outChannel, itemC[knl_idx])), static_cast<uint32_t>(global_y)};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mConvGemmInpTensor.get()));
if(mResource->mUseImage){
ret |= kernel[knl_idx]->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= kernel[knl_idx]->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mConvGemmOutTensor.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(inputChannelBlocks));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(blockNum));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(blockDim));
MNN_CHECK_CL_SUCCESS(ret, "setArg gemv_conv1x1_buf Kernel Select");
std::pair<std::vector<uint32_t>, int> retTune;
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[knl_idx] + info, kernel[knl_idx]);
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
}
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_quant_batch_buf", kernelName[min_index], buildOption);
//MNN_PRINT("Kernel is %d.\n", min_index);
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmInpTensor.get()));
if(mResource->mUseImage){
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmOutTensor.get()));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannelBlocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockNum));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockDim));
MNN_CHECK_CL_SUCCESS(ret, "setArg gemv_conv1x1_buf");
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
}
// reshape n/4*hw*c*4 -> n*c/4*4*hw
{
auto &unit = mUnits[2];
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(mResource->mOutputChannel, 4)), static_cast<uint32_t>(UP_DIV(batch, 4)), static_cast<uint32_t>(width_height)};
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_quant_batch_buf", "reshape_nhwc4_nchw4", buildOption);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(unit.kernel));
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmOutTensor.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(width_height));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(batch));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
MNN_CHECK_CL_SUCCESS(ret, "setArg reshape_cn4_nc4");
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), "reshape_nhwc4_nchw4", unit.kernel).first;
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
}
return;
}
2023-12-27 17:26:44 +08:00
ConvBufLowMemoryExecution::ConvBufLowMemoryExecution(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const MNN::Op *op, Backend *backend)
2024-04-19 11:58:21 +08:00
: ConvBufCommonExecution(op->main_as_Convolution2D(), backend), CommonExecution(backend, op) {
2023-12-27 17:26:44 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("Start ConvBufLowMemoryExecution init !\n");
#endif
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
const auto *conv2dParams = op->main_as_Convolution2D();
const auto *conv2dCommonParams = conv2dParams->common();
2024-04-19 11:58:21 +08:00
mResource->mConv2dParams = conv2dParams;
mResource->mConv2dCommonParams = conv2dCommonParams;
2024-02-29 16:21:40 +08:00
mResource->mStrides = {conv2dCommonParams->strideY(), conv2dCommonParams->strideX()};
mResource->mDilations = {conv2dCommonParams->dilateY(), conv2dCommonParams->dilateX()};
2023-12-27 17:26:44 +08:00
auto padding = ConvolutionCommon::convolutionPad(inputs[0], outputs[0], conv2dCommonParams);
mPaddings[0] = padding.second;//padY
mPaddings[1] = padding.first;//padX
2024-02-29 16:21:40 +08:00
mResource->mKernelWidth = conv2dCommonParams->kernelX();
mResource->mKernelHeight = conv2dCommonParams->kernelY();
2024-04-19 11:58:21 +08:00
mResource->mOutputChannel = conv2dCommonParams->outputCount();
2023-12-27 17:26:44 +08:00
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
// set mDequantScale, mDequantOffset, mFilterDataPtr
// prepare mDequantScale mDequantOffset mFilterDataPtr
getInfoFromOpLowMemory(quanCommon);
//select opt conv method
2024-05-11 19:17:02 +08:00
if (mResource->mKernelHeight == mResource->mKernelWidth && mResource->mKernelHeight == 1 && mResource->mStrides[0] == 1 && mResource->mStrides[1] == 1 && conv2dCommonParams->padX() == 0 && conv2dCommonParams->padY() == 0 && conv2dCommonParams->dilateX() == 1 && conv2dCommonParams->dilateY() == 1) {
2024-04-19 11:58:21 +08:00
set1x1WeightLowMemory(4, 16, mFilterDataPtr, quanCommon);
mResource->mConv1x1Opt = true;
2023-12-27 17:26:44 +08:00
}else {
// set mFilter for not 1x1 case
setGeneralWeightLowMemory(mFilterDataPtr, quanCommon);
}
// Create Kernel
if (conv2dCommonParams->relu()) {
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DRELU");
2023-12-27 17:26:44 +08:00
} else if (conv2dCommonParams->relu6()) {
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DRELU6");
2023-12-27 17:26:44 +08:00
}
2024-07-04 11:53:45 +08:00
if (mResource->mNumQuantBit == 8) {
2023-12-27 17:26:44 +08:00
// int8 case
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT8");
2024-07-04 11:53:45 +08:00
} else if (mResource->mNumQuantBit == 4){
2023-12-27 17:26:44 +08:00
// int4 case
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT4");
2023-12-27 17:26:44 +08:00
} else {/* More types to be supported. */}
#ifdef LOG_VERBOSE
2024-07-04 11:53:45 +08:00
MNN_PRINT("end ConvBufLowMemoryExecution init !\n");
2023-12-27 17:26:44 +08:00
#endif
}
2024-04-19 11:58:21 +08:00
ConvBufLowMemoryExecution::ConvBufLowMemoryExecution(std::shared_ptr<ConvBufResource> resource, const MNN::Op* op, Backend *backend)
: ConvBufCommonExecution(backend), CommonExecution(backend, op) {
2023-12-27 17:26:44 +08:00
mResource = resource;
2024-02-29 16:21:40 +08:00
const auto *conv2dParams = op->main_as_Convolution2D();
const auto *conv2dCommonParams = conv2dParams->common();
2024-04-19 11:58:21 +08:00
mResource->mConv2dParams = conv2dParams;
mResource->mConv2dCommonParams = conv2dCommonParams;
2023-12-27 17:26:44 +08:00
}
ConvBufLowMemoryExecution::~ConvBufLowMemoryExecution() {
// Do nothing
}
bool ConvBufLowMemoryExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new ConvBufLowMemoryExecution(mResource, op, bn);
return true;
}
2024-04-19 11:58:21 +08:00
ErrorCode ConvBufLowMemoryExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2023-12-27 17:26:44 +08:00
#ifdef LOG_VERBOSE
2024-07-04 11:53:45 +08:00
MNN_PRINT("Start ConvBufLowMemoryExecution onResize !\n");
2023-12-27 17:26:44 +08:00
#endif
2024-04-19 11:58:21 +08:00
mUnits.resize(1);
2023-12-27 17:26:44 +08:00
auto input = inputs[0];
auto output = outputs[0];
2024-04-19 11:58:21 +08:00
auto padding = ConvolutionCommon::convolutionPad(input, output, mResource->mConv2dCommonParams);
2024-02-29 16:21:40 +08:00
mPaddings[0] = padding.second;//padY
mPaddings[1] = padding.first;//padX
// onclone default use conv1x1Opt, need reset
2024-07-04 11:53:45 +08:00
std::vector<int> outputShape = tensorShapeFormat(output);
const int batch = outputShape.at(0);
bool isMali = mOpenCLBackend->getOpenCLRuntime()->getGpuType() == MALI;
2024-04-19 11:58:21 +08:00
if (mResource->mConv1x1Opt) {
2024-07-04 11:53:45 +08:00
if(batch > 1 && isMali){
tuneGemvBatchLowMemory(input, output);
}else{
tuneGemmLowMemory(input, output);
}
2023-12-27 17:26:44 +08:00
} else {
tuneGeneralCaseLowMemory(input, output);
}
#ifdef LOG_VERBOSE
2024-07-04 11:53:45 +08:00
MNN_PRINT("end ConvBufLowMemoryExecution onResize !\n");
2023-12-27 17:26:44 +08:00
#endif
return NO_ERROR;
}
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */
#endif /* MNN_LOW_MEMORY */