2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeMatMul.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2020-11-05 16:41:56 +08:00
|
|
|
#include "shape/SizeComputer.hpp"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "core/TensorUtils.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
class MatMulSizeComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
2019-06-17 20:10:35 +08:00
|
|
|
MNN_ASSERT(op->main_type() == OpParameter_MatMul);
|
|
|
|
auto matMul = op->main_as_MatMul();
|
2020-05-14 13:19:30 +08:00
|
|
|
auto i0Dim = inputs[0]->dimensions();
|
|
|
|
auto i1Dim = inputs[1]->dimensions();
|
2020-11-05 16:41:56 +08:00
|
|
|
if (i0Dim < 2 || i1Dim < 2) {
|
|
|
|
return false;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
auto output = outputs[0];
|
2020-05-14 13:19:30 +08:00
|
|
|
auto w0 = inputs[0]->length(i0Dim - 1);
|
|
|
|
auto h0 = inputs[0]->length(i0Dim - 2);
|
|
|
|
output->buffer().type = inputs[0]->buffer().type;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2019-06-17 20:10:35 +08:00
|
|
|
if (matMul->transposeA()) {
|
|
|
|
auto t = w0;
|
|
|
|
w0 = h0;
|
|
|
|
h0 = t;
|
|
|
|
}
|
|
|
|
|
2020-05-14 13:19:30 +08:00
|
|
|
auto w1 = inputs[1]->length(i1Dim - 1);
|
|
|
|
auto h1 = inputs[1]->length(i1Dim - 2);
|
2019-06-17 20:10:35 +08:00
|
|
|
if (matMul->transposeB()) {
|
|
|
|
auto t = w1;
|
|
|
|
w1 = h1;
|
|
|
|
h1 = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (w0 != h1) {
|
|
|
|
return false;
|
|
|
|
}
|
2020-05-14 13:19:30 +08:00
|
|
|
// Compute BroastCast Dims
|
|
|
|
auto input0 = inputs[0];
|
|
|
|
auto input1 = inputs[1];
|
|
|
|
auto o0Dim = i0Dim;
|
|
|
|
if (i1Dim > i0Dim) {
|
|
|
|
o0Dim = i1Dim;
|
|
|
|
input0 = inputs[1];
|
|
|
|
input1 = inputs[0];
|
|
|
|
}
|
|
|
|
auto dimOffset = o0Dim - 2;
|
|
|
|
output->buffer().dimensions = o0Dim;
|
|
|
|
const int maxDimensions = dimOffset;
|
|
|
|
const int diffDimension = input0->dimensions() - input1->dimensions();
|
|
|
|
|
|
|
|
for (int i = 0; i < maxDimensions; i++) {
|
|
|
|
output->setLength(i, input0->length(i));
|
|
|
|
}
|
|
|
|
for (int i = diffDimension; i < maxDimensions; i++) {
|
|
|
|
const int input1Index = i - diffDimension;
|
|
|
|
int dim1 = input1->buffer().dim[input1Index].extent;
|
|
|
|
if (dim1 != output->length(i) && (dim1 != 1 && output->length(i) != 1)) {
|
|
|
|
MNN_PRINT("Don't support broadcast for MatMulOp, i0=%d, i1=%d\n", output->length(i), dim1);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (dim1 == output->length(i)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (dim1 != output->length(i) && (dim1 == 1 || output->length(i) == 1)) {
|
|
|
|
output->setLength(i, output->length(i) * dim1);
|
|
|
|
} else {
|
|
|
|
MNN_PRINT("Error, the logic flow should never get here");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Last Two dim
|
|
|
|
output->setLength(o0Dim - 2, h0);
|
|
|
|
output->setLength(o0Dim - 1, w1);
|
|
|
|
|
2019-08-22 20:13:46 +08:00
|
|
|
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
return true;
|
|
|
|
}
|
2020-11-05 16:41:56 +08:00
|
|
|
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
Tensor* C = outputs[0];
|
|
|
|
auto w0 = inputs[0]->length(1);
|
|
|
|
auto h0 = inputs[0]->length(0);
|
|
|
|
auto e = C->length(0);
|
|
|
|
auto h = C->length(1);
|
|
|
|
auto l = w0;
|
|
|
|
const auto mat = op->main_as_MatMul();
|
|
|
|
if (mat->transposeA()) {
|
|
|
|
l = h0;
|
|
|
|
}
|
|
|
|
auto flops = (float)e * l * h / FLOPS_M;
|
|
|
|
return flops;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(MatMulSizeComputer, OpType_MatMul);
|
|
|
|
} // namespace MNN
|