MNN/source/backend/cpu/compute/StrassenMatmulComputor.cpp

448 lines
18 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// StrassenMatmulComputor.cpp
// MNN
//
// Created by MNN on 2019/02/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-02-26 09:57:17 +08:00
#include "StrassenMatmulComputor.hpp"
#include "backend/cpu/CPUBackend.hpp"
2019-04-17 10:49:11 +08:00
#include <string.h>
2020-02-26 09:57:17 +08:00
#include "ConvOpt.h"
2020-07-04 01:21:30 +08:00
#include <limits.h>
#include "CommonOptFunction.h"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
2020-02-26 09:57:17 +08:00
#include "core/Concurrency.h"
2019-04-17 10:49:11 +08:00
//#define MNN_OPEN_TIME_TRACE
2019-12-27 22:16:57 +08:00
#include <MNN/AutoTime.hpp>
2020-11-05 16:41:56 +08:00
#include "math/Vec.hpp"
2020-07-04 01:21:30 +08:00
#include "math/Matrix.hpp"
2020-11-05 16:41:56 +08:00
using Vec4 = MNN::Math::Vec<float, 4>;
2019-04-17 10:49:11 +08:00
extern "C" {
void MNNStrassenMergeCFunction(float* c11, float* c12, float* c21, float* c22, float* xAddr, size_t cStride,
size_t eSub, size_t hSub);
}
#ifndef MNN_USE_NEON
void MNNStrassenMergeCFunction(float* c11, float* c12, float* c21, float* c22, float* xAddr, size_t cStride,
2020-07-04 01:21:30 +08:00
size_t eSub, size_t hSub) {
2020-02-26 09:57:17 +08:00
for (int y=0; y<hSub; ++y) {
auto c11Y = c11 + y * cStride;
auto c12Y = c12 + y * cStride;
auto c22Y = c22 + y * cStride;
auto c21Y = c21 + y * cStride;
2020-07-04 01:21:30 +08:00
auto xY = xAddr + y * eSub * 4;
for (int x=0; x<eSub; ++x) {
2020-02-26 09:57:17 +08:00
auto xv = Vec4::load(xY + 4*x);
auto c21v = Vec4::load(c21Y + 4*x);
auto c11v = Vec4::load(c11Y + 4*x);
auto c22v = Vec4::load(c22Y + 4*x);
auto c12v = Vec4::load(c12Y + 4*x);
c12v = c12v + xv;
c21v = c12v + c21v;
c12v = c22v + c12v;
c22v = c22v + c21v;
c12v = c11v + c12v;
Vec4::save(c12Y + 4*x, c12v);
Vec4::save(c22Y + 4*x, c22v);
Vec4::save(c21Y + 4*x, c21v);
2020-05-16 22:21:15 +08:00
}
2020-02-26 09:57:17 +08:00
}
2019-04-17 10:49:11 +08:00
}
#endif
namespace MNN {
typedef std::shared_ptr<Tensor> PTensor;
class StrassenMatrixComputor::AddTensor {
public:
AddTensor(Tensor* t, Backend* bn, Backend::StorageType storageType = Backend::DYNAMIC) {
mTensor.reset(t);
mValid = bn->onAcquireBuffer(t, storageType);
mBackend = bn;
mStorageType = storageType;
}
inline bool valid() const {
return mValid;
}
~AddTensor() {
mBackend->onReleaseBuffer(mTensor.get(), mStorageType);
}
const Tensor* operator->() const {
return mTensor.get();
}
const Tensor* get() const {
return mTensor.get();
}
private:
std::shared_ptr<Tensor> mTensor;
Backend* mBackend;
bool mValid = false;
Backend::StorageType mStorageType;
};
2020-02-26 09:57:17 +08:00
StrassenMatrixComputor::StrassenMatrixComputor(Backend* bn, bool multithread, int maxDepth) : mBackend(bn) {
2019-04-17 10:49:11 +08:00
mMaxDepth = maxDepth;
2020-02-26 09:57:17 +08:00
mSupportMultiThread = multithread;
2019-04-17 10:49:11 +08:00
};
StrassenMatrixComputor::~StrassenMatrixComputor() {
// Do nothing
}
2020-07-04 01:21:30 +08:00
ErrorCode StrassenMatrixComputor::_generateTrivalMatMul(const Tensor* AT, const Tensor* BT, const Tensor* CT, const Tensor* COT, const std::vector<float>& active) {
2019-04-17 10:49:11 +08:00
// Generate Trival Matrix Multiply
2020-07-04 01:21:30 +08:00
auto e = AT->length(1);
MNN_ASSERT(e > 0);
auto aHost = AT->host<float>();
2019-04-17 10:49:11 +08:00
auto bHost = BT->host<float>();
2020-07-04 01:21:30 +08:00
auto cHost = CT->host<float>();
auto aStride = AT->stride(0);
auto bStride = BT->stride(0);
auto cStride = CT->stride(0);
int eP, lP, hP;
MNNGetMatMulPackMode(&eP, &lP, &hP);
2020-02-26 09:57:17 +08:00
auto numberThread = mSupportMultiThread ? ((CPUBackend*)backend())->threadNumber() : 1;
2020-07-04 01:21:30 +08:00
auto CONVOLUTION_TILED_NUMBER = eP;
auto bExtraStride = bStride - BT->length(1) * BT->length(2);
AddTensor tileBuffer(Tensor::createDevice<float>(std::vector<int>{numberThread, BT->length(1), CONVOLUTION_TILED_NUMBER}), backend());
std::vector<float*> cachePtr(numberThread, nullptr);
if (hP % 4 != 0) {
auto hDiv = MNNGetC4DivNumber(hP);
AddTensor matmulTempBuffer(Tensor::createDevice<float>(std::vector<int>{numberThread, eP * hDiv * 4 + CT->length(0) * eP * 4}), backend());
for (int i=0; i<numberThread; ++i) {
cachePtr[i] = matmulTempBuffer->host<float>() + i * matmulTempBuffer->stride(0);
}
}
auto tileHostOrigin = tileBuffer->host<float>();
int unitNumber = e / CONVOLUTION_TILED_NUMBER;
int xCount = e - unitNumber * CONVOLUTION_TILED_NUMBER;
std::vector<size_t> parameters(6);
auto hMin = std::min(CT->length(0) * 4, BT->length(0) * hP);
parameters[0] = xCount * sizeof(float);
parameters[1] = BT->length(1);
parameters[2] = hMin;
parameters[3] = cStride * sizeof(float);
parameters[4] = 0;
parameters[5] = bExtraStride * sizeof(float);
auto eReal = aStride / AT->length(2);
const float* biasPtr = nullptr;
if (nullptr != COT) {
if (COT != CT) {
biasPtr = COT->host<float>();
}
}
mFunctions.emplace_back(
std::make_pair([xCount, aHost, bHost, cHost, tileHostOrigin, unitNumber, bExtraStride, numberThread, parameters, eReal, CONVOLUTION_TILED_NUMBER, cachePtr, biasPtr, active](int tId) {
auto tileHost = tileHostOrigin + CONVOLUTION_TILED_NUMBER * parameters[1] * tId;
const float* postParametersPtr = nullptr;
if (!active.empty()) {
postParametersPtr = active.data();
}
auto cache = cachePtr[tId];
for (int i = tId; i < unitNumber; i+=numberThread) {
int xStart = i * CONVOLUTION_TILED_NUMBER;
auto aStart = aHost + xStart * 4;
MNNPackC4ForMatMul_A(tileHost, aStart, CONVOLUTION_TILED_NUMBER, parameters[1], eReal);
MNNPackedMatMul(cHost + 4 * xStart, tileHost, bHost, parameters.data(), cache, postParametersPtr, biasPtr);
}
if (tId != numberThread -1) {
return;
}
if (xCount > 0) {
int xStart = unitNumber * CONVOLUTION_TILED_NUMBER;
auto aStart = aHost + xStart * 4;
// Copy
MNNPackC4ForMatMul_A(tileHost, aStart, xCount, parameters[1], eReal);
MNNPackedMatMulRemain(cHost + 4 * xStart, tileHost, bHost, xCount, parameters.data(), cache, postParametersPtr, biasPtr);
}
}, numberThread));
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
2020-02-26 09:57:17 +08:00
#define MNNMATRIX_SUB_MULTITHREAD(c, a, b, widthC4, cStride, aStride, bStride, lSub) \
for (int y = tId; y < lSub; y+=numberThread) {\
2020-07-04 01:21:30 +08:00
MNNMatrixSub(c + y * cStride, a + y * aStride, b + y * bStride, widthC4, 0, 0, 0, 1);\
2020-02-26 09:57:17 +08:00
}\
2019-04-17 10:49:11 +08:00
2020-02-26 09:57:17 +08:00
#define MNNMATRIX_ADD_MULTITHREAD(c, a, b, widthC4, cStride, aStride, bStride, lSub) \
for (int y = tId; y < lSub; y+=numberThread) {\
2020-07-04 01:21:30 +08:00
MNNMatrixAdd(c + y * cStride, a + y * aStride, b + y * bStride, widthC4, 0, 0, 0, 1);\
2020-02-26 09:57:17 +08:00
}\
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
ErrorCode StrassenMatrixComputor::_generateMatMul(const Tensor* AT, const Tensor* BT, const Tensor* CT, const Tensor* COT, int currentDepth, const std::vector<float>& postParameters) {
auto l = AT->length(0);
auto e = AT->length(1);
auto h = CT->length(0);
auto lReal = BT->length(1);
static const int aUnit = 4;
2019-04-17 10:49:11 +08:00
2020-02-26 09:57:17 +08:00
auto numberThread = mSupportMultiThread ? ((CPUBackend*)backend())->threadNumber() : 1;
2020-07-04 01:21:30 +08:00
int eP, lP, hP;
MNNGetMatMulPackMode(&eP, &lP, &hP);
auto hDiv = MNNGetC4DivNumber(hP);
auto eSub = (e / eP) / 2 * eP;
auto lSub = l / 2;
auto hSub = (h / hDiv) / 2 * hDiv;
auto remainH = h - hSub * 2;
auto remainE = e - eSub * 2;
if (currentDepth >= mMaxDepth || eSub == 0 || hSub == 0 || lReal % 8 != 0) {
return _generateTrivalMatMul(AT, BT, CT, COT, postParameters);
}
2020-02-26 09:57:17 +08:00
2019-04-17 10:49:11 +08:00
/*
Compute the memory read / write cost for expand
*/
2020-07-04 01:21:30 +08:00
auto bLSub = lSub * 4;
auto bHSub = (hSub * 4) / hP;
float AComputeCost = 4 * ((float)eSub * lSub) * aUnit;
float BComputeCost = 4 * (float)bLSub * bHSub * hP;
float CComputeCost = 7 * (float)eSub * hSub * aUnit;
float saveMatMulCost = (e / eP) * (aUnit * eP * hSub + lSub * eP * aUnit + bLSub * bHSub * hP);
const float pernaty = 1.5f;//FIXME: Find beter way to set it
//MNN_PRINT("%f - %f, %f, %f\n", saveMatMulCost, AComputeCost, BComputeCost, CComputeCost);
float saveCost = saveMatMulCost - (AComputeCost + BComputeCost + CComputeCost) * pernaty;
if (saveCost <= 0.0f) {
return _generateTrivalMatMul(AT, BT, CT, COT, postParameters);
2019-04-17 10:49:11 +08:00
}
// Strassen Construct
auto bn = backend();
currentDepth += 1;
2020-07-04 01:21:30 +08:00
auto bUnit = hP;
auto AS = std::vector<int>{lSub, eSub, aUnit};
auto BS = std::vector<int>{bHSub, bLSub, bUnit};
auto CS = std::vector<int>{hSub, eSub, aUnit};
auto ACS = AS;
if (CS[0] > ACS[0]) {
ACS[0] = CS[0];
}
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
// Use XReal to contain both AX and CX, that's two cache
AddTensor XReal(Tensor::createDevice<float>(ACS), bn);
2019-04-17 10:49:11 +08:00
AddTensor Y(Tensor::createDevice<float>(BS), bn);
2020-07-04 01:21:30 +08:00
if (!XReal.valid() || !Y.valid()) {
2019-04-17 10:49:11 +08:00
return OUT_OF_MEMORY;
}
2020-07-04 01:21:30 +08:00
PTensor X(Tensor::create<float>(AS, XReal->host<float>()));
PTensor CX(Tensor::create<float>(CS, XReal->host<float>()));
2019-04-17 10:49:11 +08:00
auto xAddr = X->host<float>();
auto yAddr = Y->host<float>();
2020-07-04 01:21:30 +08:00
auto aStride = AT->stride(0);
auto a11 = AT->host<float>() + 0 * aUnit * eSub + 0 * aStride * lSub;
auto a12 = AT->host<float>() + 0 * aUnit * eSub + 1 * aStride * lSub;
auto a21 = AT->host<float>() + 1 * aUnit * eSub + 0 * aStride * lSub;
auto a22 = AT->host<float>() + 1 * aUnit * eSub + 1 * aStride * lSub;
2019-04-17 10:49:11 +08:00
auto bStride = BT->stride(0);
2020-07-04 01:21:30 +08:00
auto b11 = BT->host<float>() + 0 * bUnit * bLSub + 0 * bStride * bHSub;
auto b12 = BT->host<float>() + 0 * bUnit * bLSub + 1 * bStride * bHSub;
auto b21 = BT->host<float>() + 1 * bUnit * bLSub + 0 * bStride * bHSub;
auto b22 = BT->host<float>() + 1 * bUnit * bLSub + 1 * bStride * bHSub;
2019-04-17 10:49:11 +08:00
2020-07-04 01:21:30 +08:00
auto cStride = CT->stride(0);
auto c11 = CT->host<float>() + 0 * aUnit * eSub + 0 * cStride * hSub;
auto c12 = CT->host<float>() + 0 * aUnit * eSub + 1 * cStride * hSub;
auto c21 = CT->host<float>() + 1 * aUnit * eSub + 0 * cStride * hSub;
auto c22 = CT->host<float>() + 1 * aUnit * eSub + 1 * cStride * hSub;
2019-04-17 10:49:11 +08:00
PTensor A11(Tensor::create<float>(AS, a11));
A11->setStride(0, aStride);
PTensor A12(Tensor::create<float>(AS, a12));
A12->setStride(0, aStride);
PTensor A21(Tensor::create<float>(AS, a21));
A21->setStride(0, aStride);
PTensor A22(Tensor::create<float>(AS, a22));
A22->setStride(0, aStride);
PTensor B11(Tensor::create<float>(BS, b11));
B11->setStride(0, bStride);
PTensor B12(Tensor::create<float>(BS, b12));
B12->setStride(0, bStride);
PTensor B21(Tensor::create<float>(BS, b21));
B21->setStride(0, bStride);
PTensor B22(Tensor::create<float>(BS, b22));
B22->setStride(0, bStride);
PTensor C11(Tensor::create<float>(CS, c11));
C11->setStride(0, cStride);
PTensor C12(Tensor::create<float>(CS, c12));
C12->setStride(0, cStride);
PTensor C21(Tensor::create<float>(CS, c21));
C21->setStride(0, cStride);
PTensor C22(Tensor::create<float>(CS, c22));
C22->setStride(0, cStride);
{
// S3=A11-A21, T3=B22-B12, P7=S3*T3
2020-07-04 01:21:30 +08:00
auto f = [a11, a21, b22, b12, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride, numberThread, bUnit, bLSub, bHSub](int tId) {
MNNMATRIX_SUB_MULTITHREAD(xAddr, a11, a21, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);
MNNMATRIX_SUB_MULTITHREAD(yAddr, b22, b12, bLSub * bUnit / 4, bLSub * bUnit, bStride, bStride, bHSub);
2019-04-17 10:49:11 +08:00
};
2020-02-26 09:57:17 +08:00
mFunctions.emplace_back(std::make_pair(f, numberThread));
2020-07-04 01:21:30 +08:00
auto code = _generateMatMul(X.get(), Y.get(), C21.get(), nullptr, currentDepth, {});
2019-04-17 10:49:11 +08:00
if (code != NO_ERROR) {
return code;
}
}
{
// S1=A21+A22, T1=B12-B11, P5=S1T1
2020-07-04 01:21:30 +08:00
auto f = [a22, a21, b11, b12, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride, numberThread, bUnit, bLSub, bHSub](int tId) {
MNNMATRIX_ADD_MULTITHREAD(xAddr, a21, a22, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);
MNNMATRIX_SUB_MULTITHREAD(yAddr, b12, b11, bLSub * bUnit / 4, bLSub * bUnit, bStride, bStride, bHSub);
2019-04-17 10:49:11 +08:00
};
2020-02-26 09:57:17 +08:00
mFunctions.emplace_back(std::make_pair(f, numberThread));
2020-07-04 01:21:30 +08:00
auto code = _generateMatMul(X.get(), Y.get(), C22.get(), nullptr, currentDepth, {});
2019-04-17 10:49:11 +08:00
if (code != NO_ERROR) {
return code;
}
}
{
// S2=S1-A11, T2=B22-T1, P6=S2T2
2020-07-04 01:21:30 +08:00
auto f = [a11, b22, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride, numberThread, bUnit, bLSub, bHSub](int tId) {
MNNMATRIX_SUB_MULTITHREAD(xAddr, xAddr, a11, eSub * aUnit / 4, eSub * aUnit, eSub * aUnit, aStride, lSub);
MNNMATRIX_SUB_MULTITHREAD(yAddr, b22, yAddr, bLSub * bUnit / 4, bLSub * bUnit, bStride, bLSub * bUnit, bHSub);
2019-04-17 10:49:11 +08:00
};
2020-02-26 09:57:17 +08:00
mFunctions.emplace_back(std::make_pair(f, numberThread));
2020-07-04 01:21:30 +08:00
auto code = _generateMatMul(X.get(), Y.get(), C12.get(), nullptr, currentDepth, {});
2019-04-17 10:49:11 +08:00
if (code != NO_ERROR) {
return code;
}
}
{
// S4=A12-S2, P3=S4*B22, P1=A11*B11
2020-07-04 01:21:30 +08:00
auto f = [a12, xAddr, eSub, lSub, aStride, numberThread](int tId) {
MNNMATRIX_SUB_MULTITHREAD(xAddr, a12, xAddr, eSub * aUnit / 4, eSub * aUnit, aStride, eSub * aUnit, lSub);
2019-04-17 10:49:11 +08:00
};
2020-02-26 09:57:17 +08:00
mFunctions.emplace_back(std::make_pair(f, numberThread));
2020-07-04 01:21:30 +08:00
auto code = _generateMatMul(X.get(), B22.get(), C11.get(), nullptr, currentDepth, {});
2019-04-17 10:49:11 +08:00
if (code != NO_ERROR) {
return code;
}
2020-07-04 01:21:30 +08:00
code = _generateMatMul(A11.get(), B11.get(), CX.get(), nullptr, currentDepth, {});
2019-04-17 10:49:11 +08:00
if (code != NO_ERROR) {
return code;
}
}
{
// U2=P1+P6, U3=U2+P7, U4=U2+P5, U7=U3+P5
// U5=U4+P3, T4=T2-B21, P4=A22*T4
2020-07-04 01:21:30 +08:00
auto f = [c11, c12, c21, c22, b21, xAddr, yAddr, eSub, lSub, hSub, bStride, cStride, numberThread, bUnit, bHSub, bLSub](int tId) {
for (int y = tId; y < hSub; y+=numberThread) {
MNNStrassenMergeCFunction(c11 + y * cStride, c12 + y * cStride, c21 + y * cStride, c22 + y * cStride, xAddr + y * eSub * 4, 0, eSub, 1);
2020-02-26 09:57:17 +08:00
}
2020-07-04 01:21:30 +08:00
MNNMATRIX_SUB_MULTITHREAD(yAddr, yAddr, b21, bLSub * bUnit / 4, bLSub * bUnit, bLSub * bUnit, bStride, bHSub);
2019-04-17 10:49:11 +08:00
};
2020-02-26 09:57:17 +08:00
mFunctions.emplace_back(std::make_pair(f, numberThread));
2020-07-04 01:21:30 +08:00
auto code = _generateMatMul(A22.get(), Y.get(), C11.get(), nullptr, currentDepth, {});
2019-04-17 10:49:11 +08:00
if (code != NO_ERROR) {
return code;
}
}
{
// U6=U3-P4, P2=A12*B21, U1=P1+P2
2020-07-04 01:21:30 +08:00
auto f0 = [c11, c21, eSub, hSub, cStride, numberThread](int tId) {
auto cw = eSub * aUnit / 4;
MNNMATRIX_SUB_MULTITHREAD(c21, c21, c11, cw, cStride, cStride, cStride, hSub);
2019-04-17 10:49:11 +08:00
};
2020-02-26 09:57:17 +08:00
mFunctions.emplace_back(std::make_pair(f0, numberThread));
2020-07-04 01:21:30 +08:00
auto code = _generateMatMul(A12.get(), B21.get(), C11.get(), nullptr, currentDepth, {});
2019-04-17 10:49:11 +08:00
if (code != NO_ERROR) {
return code;
}
2020-07-04 01:21:30 +08:00
auto f1 = [c11, xAddr, eSub, hSub, cStride, numberThread](int tId) {
auto cw = eSub * aUnit / 4;
MNNMATRIX_ADD_MULTITHREAD(c11, c11, xAddr, cw, cStride, cStride, eSub * aUnit, hSub);
2019-04-17 10:49:11 +08:00
};
2020-02-26 09:57:17 +08:00
mFunctions.emplace_back(std::make_pair(f1, numberThread));
2020-07-04 01:21:30 +08:00
if (!postParameters.empty() && nullptr != COT) {
auto biasPtr = COT->host<float>();
if (1 == numberThread) {
auto postFunction = [c11, eSub, hSub, cStride, numberThread, biasPtr, postParameters](int tId) {
auto width = eSub * 2;
auto height = hSub * 2;
MNNAxByClampBroadcastC4(c11, c11, biasPtr, width, cStride, cStride, height, postParameters.data());
};
mFunctions.emplace_back(std::make_pair(postFunction, numberThread));
} else {
auto postFunction = [c11, eSub, hSub, cStride, numberThread, biasPtr, postParameters](int tId) {
auto width = eSub * 2;
auto height = hSub * 2;
for (int y = tId; y < height; y+=numberThread) {
MNNAxByClampBroadcastC4(c11 + y * cStride, c11 + y * cStride, biasPtr + y * 4, width, 0, 0, 1, postParameters.data());
}
};
mFunctions.emplace_back(std::make_pair(postFunction, numberThread));
}
}
2019-04-17 10:49:11 +08:00
}
2020-07-04 01:21:30 +08:00
if (remainH > 0) {
auto lastH = hSub * 2;
auto cLast = CT->host<float>() + cStride * lastH;
auto lastHB = bHSub * 2;
auto bLast = BT->host<float>() + bStride * lastHB;
PTensor BLast(Tensor::create<float>(std::vector<int>{BT->length(0) - lastHB, BT->length(1), bUnit}, bLast));
PTensor CLast(Tensor::create<float>(std::vector<int>{remainH, eSub * 2, aUnit}, cLast));
PTensor ALast(Tensor::create<float>(std::vector<int>{l, eSub * 2, aUnit}, AT->host<float>()));
PTensor biasWrap;
const Tensor* bias = COT;
if (nullptr != bias) {
biasWrap.reset(Tensor::create<float>(std::vector<int>{remainH, 1, aUnit}, COT->host<float>() + 4 * lastH));
bias = biasWrap.get();
}
BLast->setStride(0, bStride);
2020-05-16 22:21:15 +08:00
CLast->setStride(0, cStride);
2020-07-04 01:21:30 +08:00
ALast->setStride(0, aStride);
auto code = _generateTrivalMatMul(AT, BLast.get(), CLast.get(), bias, postParameters);
if (NO_ERROR != code) {
return code;
}
2020-05-16 22:21:15 +08:00
}
2020-07-04 01:21:30 +08:00
if (remainE > 0) {
auto aLast = AT->host<float>() + eSub * 2 * aUnit;
auto cLast = CT->host<float>() + eSub * 2 * aUnit;
PTensor ALast(Tensor::create<float>(std::vector<int>{l, remainE, aUnit}, aLast));
PTensor CLast(Tensor::create<float>(std::vector<int>{h, remainE, aUnit}, cLast));
2019-04-17 10:49:11 +08:00
ALast->setStride(0, aStride);
CLast->setStride(0, cStride);
2020-07-04 01:21:30 +08:00
auto code = _generateTrivalMatMul(ALast.get(), BT, CLast.get(), COT, postParameters);
if (NO_ERROR != code) {
return code;
}
2019-04-17 10:49:11 +08:00
}
return NO_ERROR;
}
void StrassenMatrixComputor::onReset() {
2019-04-17 10:49:11 +08:00
mFunctions.clear();
}
2020-07-04 01:21:30 +08:00
ErrorCode StrassenMatrixComputor::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const std::vector<float>& postParameters) {
MNN_ASSERT(inputs.size() == 2 || inputs.size() == 3);
MNN_ASSERT(outputs.size() == 1);
auto A = inputs[0];
auto BT = inputs[1];
auto C = outputs[0];
2020-07-04 01:21:30 +08:00
Tensor* CO = nullptr;
if (inputs.size() > 2) {
CO = inputs[2];
}
return _generateMatMul(A, BT, C, CO, 0, postParameters);
2019-04-17 10:49:11 +08:00
}
2020-02-26 09:57:17 +08:00
void StrassenMatrixComputor::onExecute() {
2019-04-17 10:49:11 +08:00
// All is done in onResize, just execute it
for (auto& f : mFunctions) {
2020-02-26 09:57:17 +08:00
MNN_CONCURRENCY_BEGIN(tId, f.second) {
f.first(tId);
}
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
}
}
} // namespace MNN