2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// StrassenMatmulComputor.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/02/11.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2020-02-26 09:57:17 +08:00
|
|
|
#include "StrassenMatmulComputor.hpp"
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
#include <string.h>
|
2020-02-26 09:57:17 +08:00
|
|
|
#include "ConvOpt.h"
|
2020-07-04 01:21:30 +08:00
|
|
|
#include <limits.h>
|
2020-05-18 07:22:30 +08:00
|
|
|
#include "CommonOptFunction.h"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Macro.h"
|
2020-02-26 09:57:17 +08:00
|
|
|
#include "core/Concurrency.h"
|
2019-04-17 10:49:11 +08:00
|
|
|
//#define MNN_OPEN_TIME_TRACE
|
2019-12-27 22:16:57 +08:00
|
|
|
#include <MNN/AutoTime.hpp>
|
2020-11-05 16:41:56 +08:00
|
|
|
#include "math/Vec.hpp"
|
2020-07-04 01:21:30 +08:00
|
|
|
#include "math/Matrix.hpp"
|
2020-11-05 16:41:56 +08:00
|
|
|
using Vec4 = MNN::Math::Vec<float, 4>;
|
2019-04-17 10:49:11 +08:00
|
|
|
extern "C" {
|
|
|
|
void MNNStrassenMergeCFunction(float* c11, float* c12, float* c21, float* c22, float* xAddr, size_t cStride,
|
|
|
|
size_t eSub, size_t hSub);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef MNN_USE_NEON
|
|
|
|
void MNNStrassenMergeCFunction(float* c11, float* c12, float* c21, float* c22, float* xAddr, size_t cStride,
|
2020-07-04 01:21:30 +08:00
|
|
|
size_t eSub, size_t hSub) {
|
2020-02-26 09:57:17 +08:00
|
|
|
for (int y=0; y<hSub; ++y) {
|
|
|
|
auto c11Y = c11 + y * cStride;
|
|
|
|
auto c12Y = c12 + y * cStride;
|
|
|
|
auto c22Y = c22 + y * cStride;
|
|
|
|
auto c21Y = c21 + y * cStride;
|
2020-07-04 01:21:30 +08:00
|
|
|
auto xY = xAddr + y * eSub * 4;
|
|
|
|
for (int x=0; x<eSub; ++x) {
|
2020-02-26 09:57:17 +08:00
|
|
|
auto xv = Vec4::load(xY + 4*x);
|
|
|
|
auto c21v = Vec4::load(c21Y + 4*x);
|
|
|
|
auto c11v = Vec4::load(c11Y + 4*x);
|
|
|
|
auto c22v = Vec4::load(c22Y + 4*x);
|
|
|
|
auto c12v = Vec4::load(c12Y + 4*x);
|
|
|
|
c12v = c12v + xv;
|
|
|
|
c21v = c12v + c21v;
|
|
|
|
c12v = c22v + c12v;
|
|
|
|
c22v = c22v + c21v;
|
|
|
|
c12v = c11v + c12v;
|
|
|
|
Vec4::save(c12Y + 4*x, c12v);
|
|
|
|
Vec4::save(c22Y + 4*x, c22v);
|
|
|
|
Vec4::save(c21Y + 4*x, c21v);
|
2020-05-16 22:21:15 +08:00
|
|
|
}
|
2020-02-26 09:57:17 +08:00
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
typedef std::shared_ptr<Tensor> PTensor;
|
|
|
|
class StrassenMatrixComputor::AddTensor {
|
|
|
|
public:
|
|
|
|
AddTensor(Tensor* t, Backend* bn, Backend::StorageType storageType = Backend::DYNAMIC) {
|
|
|
|
mTensor.reset(t);
|
|
|
|
mValid = bn->onAcquireBuffer(t, storageType);
|
|
|
|
mBackend = bn;
|
|
|
|
mStorageType = storageType;
|
|
|
|
}
|
|
|
|
inline bool valid() const {
|
|
|
|
return mValid;
|
|
|
|
}
|
|
|
|
~AddTensor() {
|
|
|
|
mBackend->onReleaseBuffer(mTensor.get(), mStorageType);
|
|
|
|
}
|
|
|
|
|
|
|
|
const Tensor* operator->() const {
|
|
|
|
return mTensor.get();
|
|
|
|
}
|
|
|
|
const Tensor* get() const {
|
|
|
|
return mTensor.get();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::shared_ptr<Tensor> mTensor;
|
|
|
|
Backend* mBackend;
|
|
|
|
bool mValid = false;
|
|
|
|
Backend::StorageType mStorageType;
|
|
|
|
};
|
2020-02-26 09:57:17 +08:00
|
|
|
StrassenMatrixComputor::StrassenMatrixComputor(Backend* bn, bool multithread, int maxDepth) : mBackend(bn) {
|
2019-04-17 10:49:11 +08:00
|
|
|
mMaxDepth = maxDepth;
|
2020-02-26 09:57:17 +08:00
|
|
|
mSupportMultiThread = multithread;
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
|
|
|
StrassenMatrixComputor::~StrassenMatrixComputor() {
|
|
|
|
// Do nothing
|
|
|
|
}
|
|
|
|
|
2020-07-04 01:21:30 +08:00
|
|
|
ErrorCode StrassenMatrixComputor::_generateTrivalMatMul(const Tensor* AT, const Tensor* BT, const Tensor* CT, const Tensor* COT, const std::vector<float>& active) {
|
2019-04-17 10:49:11 +08:00
|
|
|
// Generate Trival Matrix Multiply
|
2020-07-04 01:21:30 +08:00
|
|
|
auto e = AT->length(1);
|
|
|
|
MNN_ASSERT(e > 0);
|
|
|
|
auto aHost = AT->host<float>();
|
2019-04-17 10:49:11 +08:00
|
|
|
auto bHost = BT->host<float>();
|
2020-07-04 01:21:30 +08:00
|
|
|
auto cHost = CT->host<float>();
|
|
|
|
auto aStride = AT->stride(0);
|
|
|
|
auto bStride = BT->stride(0);
|
|
|
|
auto cStride = CT->stride(0);
|
|
|
|
int eP, lP, hP;
|
|
|
|
MNNGetMatMulPackMode(&eP, &lP, &hP);
|
2020-02-26 09:57:17 +08:00
|
|
|
auto numberThread = mSupportMultiThread ? ((CPUBackend*)backend())->threadNumber() : 1;
|
2020-07-04 01:21:30 +08:00
|
|
|
auto CONVOLUTION_TILED_NUMBER = eP;
|
|
|
|
auto bExtraStride = bStride - BT->length(1) * BT->length(2);
|
|
|
|
AddTensor tileBuffer(Tensor::createDevice<float>(std::vector<int>{numberThread, BT->length(1), CONVOLUTION_TILED_NUMBER}), backend());
|
|
|
|
std::vector<float*> cachePtr(numberThread, nullptr);
|
|
|
|
if (hP % 4 != 0) {
|
|
|
|
auto hDiv = MNNGetC4DivNumber(hP);
|
|
|
|
AddTensor matmulTempBuffer(Tensor::createDevice<float>(std::vector<int>{numberThread, eP * hDiv * 4 + CT->length(0) * eP * 4}), backend());
|
|
|
|
for (int i=0; i<numberThread; ++i) {
|
|
|
|
cachePtr[i] = matmulTempBuffer->host<float>() + i * matmulTempBuffer->stride(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
auto tileHostOrigin = tileBuffer->host<float>();
|
|
|
|
int unitNumber = e / CONVOLUTION_TILED_NUMBER;
|
|
|
|
int xCount = e - unitNumber * CONVOLUTION_TILED_NUMBER;
|
|
|
|
std::vector<size_t> parameters(6);
|
|
|
|
auto hMin = std::min(CT->length(0) * 4, BT->length(0) * hP);
|
|
|
|
parameters[0] = xCount * sizeof(float);
|
|
|
|
parameters[1] = BT->length(1);
|
|
|
|
parameters[2] = hMin;
|
|
|
|
parameters[3] = cStride * sizeof(float);
|
|
|
|
parameters[4] = 0;
|
|
|
|
parameters[5] = bExtraStride * sizeof(float);
|
|
|
|
auto eReal = aStride / AT->length(2);
|
|
|
|
const float* biasPtr = nullptr;
|
|
|
|
if (nullptr != COT) {
|
|
|
|
if (COT != CT) {
|
|
|
|
biasPtr = COT->host<float>();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mFunctions.emplace_back(
|
|
|
|
std::make_pair([xCount, aHost, bHost, cHost, tileHostOrigin, unitNumber, bExtraStride, numberThread, parameters, eReal, CONVOLUTION_TILED_NUMBER, cachePtr, biasPtr, active](int tId) {
|
|
|
|
auto tileHost = tileHostOrigin + CONVOLUTION_TILED_NUMBER * parameters[1] * tId;
|
|
|
|
const float* postParametersPtr = nullptr;
|
|
|
|
if (!active.empty()) {
|
|
|
|
postParametersPtr = active.data();
|
|
|
|
}
|
|
|
|
auto cache = cachePtr[tId];
|
|
|
|
for (int i = tId; i < unitNumber; i+=numberThread) {
|
|
|
|
int xStart = i * CONVOLUTION_TILED_NUMBER;
|
|
|
|
auto aStart = aHost + xStart * 4;
|
|
|
|
MNNPackC4ForMatMul_A(tileHost, aStart, CONVOLUTION_TILED_NUMBER, parameters[1], eReal);
|
|
|
|
MNNPackedMatMul(cHost + 4 * xStart, tileHost, bHost, parameters.data(), cache, postParametersPtr, biasPtr);
|
|
|
|
}
|
|
|
|
if (tId != numberThread -1) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (xCount > 0) {
|
|
|
|
int xStart = unitNumber * CONVOLUTION_TILED_NUMBER;
|
|
|
|
auto aStart = aHost + xStart * 4;
|
|
|
|
// Copy
|
|
|
|
MNNPackC4ForMatMul_A(tileHost, aStart, xCount, parameters[1], eReal);
|
|
|
|
MNNPackedMatMulRemain(cHost + 4 * xStart, tileHost, bHost, xCount, parameters.data(), cache, postParametersPtr, biasPtr);
|
|
|
|
}
|
|
|
|
}, numberThread));
|
2019-04-17 10:49:11 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
2020-02-26 09:57:17 +08:00
|
|
|
#define MNNMATRIX_SUB_MULTITHREAD(c, a, b, widthC4, cStride, aStride, bStride, lSub) \
|
|
|
|
for (int y = tId; y < lSub; y+=numberThread) {\
|
2020-07-04 01:21:30 +08:00
|
|
|
MNNMatrixSub(c + y * cStride, a + y * aStride, b + y * bStride, widthC4, 0, 0, 0, 1);\
|
2020-02-26 09:57:17 +08:00
|
|
|
}\
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2020-02-26 09:57:17 +08:00
|
|
|
#define MNNMATRIX_ADD_MULTITHREAD(c, a, b, widthC4, cStride, aStride, bStride, lSub) \
|
|
|
|
for (int y = tId; y < lSub; y+=numberThread) {\
|
2020-07-04 01:21:30 +08:00
|
|
|
MNNMatrixAdd(c + y * cStride, a + y * aStride, b + y * bStride, widthC4, 0, 0, 0, 1);\
|
2020-02-26 09:57:17 +08:00
|
|
|
}\
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
|
2020-07-04 01:21:30 +08:00
|
|
|
ErrorCode StrassenMatrixComputor::_generateMatMul(const Tensor* AT, const Tensor* BT, const Tensor* CT, const Tensor* COT, int currentDepth, const std::vector<float>& postParameters) {
|
|
|
|
auto l = AT->length(0);
|
|
|
|
auto e = AT->length(1);
|
|
|
|
auto h = CT->length(0);
|
|
|
|
auto lReal = BT->length(1);
|
|
|
|
static const int aUnit = 4;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2020-02-26 09:57:17 +08:00
|
|
|
auto numberThread = mSupportMultiThread ? ((CPUBackend*)backend())->threadNumber() : 1;
|
2020-07-04 01:21:30 +08:00
|
|
|
int eP, lP, hP;
|
|
|
|
MNNGetMatMulPackMode(&eP, &lP, &hP);
|
|
|
|
auto hDiv = MNNGetC4DivNumber(hP);
|
|
|
|
auto eSub = (e / eP) / 2 * eP;
|
|
|
|
auto lSub = l / 2;
|
|
|
|
auto hSub = (h / hDiv) / 2 * hDiv;
|
|
|
|
auto remainH = h - hSub * 2;
|
|
|
|
auto remainE = e - eSub * 2;
|
|
|
|
if (currentDepth >= mMaxDepth || eSub == 0 || hSub == 0 || lReal % 8 != 0) {
|
|
|
|
return _generateTrivalMatMul(AT, BT, CT, COT, postParameters);
|
|
|
|
}
|
2020-02-26 09:57:17 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
/*
|
|
|
|
Compute the memory read / write cost for expand
|
|
|
|
*/
|
2020-07-04 01:21:30 +08:00
|
|
|
auto bLSub = lSub * 4;
|
|
|
|
auto bHSub = (hSub * 4) / hP;
|
|
|
|
float AComputeCost = 4 * ((float)eSub * lSub) * aUnit;
|
|
|
|
float BComputeCost = 4 * (float)bLSub * bHSub * hP;
|
|
|
|
float CComputeCost = 7 * (float)eSub * hSub * aUnit;
|
|
|
|
float saveMatMulCost = (e / eP) * (aUnit * eP * hSub + lSub * eP * aUnit + bLSub * bHSub * hP);
|
|
|
|
const float pernaty = 1.5f;//FIXME: Find beter way to set it
|
|
|
|
//MNN_PRINT("%f - %f, %f, %f\n", saveMatMulCost, AComputeCost, BComputeCost, CComputeCost);
|
|
|
|
float saveCost = saveMatMulCost - (AComputeCost + BComputeCost + CComputeCost) * pernaty;
|
|
|
|
if (saveCost <= 0.0f) {
|
|
|
|
return _generateTrivalMatMul(AT, BT, CT, COT, postParameters);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Strassen Construct
|
|
|
|
auto bn = backend();
|
2019-06-17 20:10:35 +08:00
|
|
|
currentDepth += 1;
|
2020-07-04 01:21:30 +08:00
|
|
|
auto bUnit = hP;
|
|
|
|
auto AS = std::vector<int>{lSub, eSub, aUnit};
|
|
|
|
auto BS = std::vector<int>{bHSub, bLSub, bUnit};
|
|
|
|
auto CS = std::vector<int>{hSub, eSub, aUnit};
|
|
|
|
|
|
|
|
auto ACS = AS;
|
|
|
|
if (CS[0] > ACS[0]) {
|
|
|
|
ACS[0] = CS[0];
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2020-07-04 01:21:30 +08:00
|
|
|
// Use XReal to contain both AX and CX, that's two cache
|
|
|
|
AddTensor XReal(Tensor::createDevice<float>(ACS), bn);
|
2019-04-17 10:49:11 +08:00
|
|
|
AddTensor Y(Tensor::createDevice<float>(BS), bn);
|
2020-07-04 01:21:30 +08:00
|
|
|
if (!XReal.valid() || !Y.valid()) {
|
2019-04-17 10:49:11 +08:00
|
|
|
return OUT_OF_MEMORY;
|
|
|
|
}
|
|
|
|
|
2020-07-04 01:21:30 +08:00
|
|
|
PTensor X(Tensor::create<float>(AS, XReal->host<float>()));
|
|
|
|
PTensor CX(Tensor::create<float>(CS, XReal->host<float>()));
|
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
auto xAddr = X->host<float>();
|
|
|
|
auto yAddr = Y->host<float>();
|
|
|
|
|
2020-07-04 01:21:30 +08:00
|
|
|
auto aStride = AT->stride(0);
|
|
|
|
auto a11 = AT->host<float>() + 0 * aUnit * eSub + 0 * aStride * lSub;
|
|
|
|
auto a12 = AT->host<float>() + 0 * aUnit * eSub + 1 * aStride * lSub;
|
|
|
|
auto a21 = AT->host<float>() + 1 * aUnit * eSub + 0 * aStride * lSub;
|
|
|
|
auto a22 = AT->host<float>() + 1 * aUnit * eSub + 1 * aStride * lSub;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
auto bStride = BT->stride(0);
|
2020-07-04 01:21:30 +08:00
|
|
|
auto b11 = BT->host<float>() + 0 * bUnit * bLSub + 0 * bStride * bHSub;
|
|
|
|
auto b12 = BT->host<float>() + 0 * bUnit * bLSub + 1 * bStride * bHSub;
|
|
|
|
auto b21 = BT->host<float>() + 1 * bUnit * bLSub + 0 * bStride * bHSub;
|
|
|
|
auto b22 = BT->host<float>() + 1 * bUnit * bLSub + 1 * bStride * bHSub;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2020-07-04 01:21:30 +08:00
|
|
|
auto cStride = CT->stride(0);
|
|
|
|
auto c11 = CT->host<float>() + 0 * aUnit * eSub + 0 * cStride * hSub;
|
|
|
|
auto c12 = CT->host<float>() + 0 * aUnit * eSub + 1 * cStride * hSub;
|
|
|
|
auto c21 = CT->host<float>() + 1 * aUnit * eSub + 0 * cStride * hSub;
|
|
|
|
auto c22 = CT->host<float>() + 1 * aUnit * eSub + 1 * cStride * hSub;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
PTensor A11(Tensor::create<float>(AS, a11));
|
|
|
|
A11->setStride(0, aStride);
|
|
|
|
PTensor A12(Tensor::create<float>(AS, a12));
|
|
|
|
A12->setStride(0, aStride);
|
|
|
|
PTensor A21(Tensor::create<float>(AS, a21));
|
|
|
|
A21->setStride(0, aStride);
|
|
|
|
PTensor A22(Tensor::create<float>(AS, a22));
|
|
|
|
A22->setStride(0, aStride);
|
|
|
|
|
|
|
|
PTensor B11(Tensor::create<float>(BS, b11));
|
|
|
|
B11->setStride(0, bStride);
|
|
|
|
PTensor B12(Tensor::create<float>(BS, b12));
|
|
|
|
B12->setStride(0, bStride);
|
|
|
|
PTensor B21(Tensor::create<float>(BS, b21));
|
|
|
|
B21->setStride(0, bStride);
|
|
|
|
PTensor B22(Tensor::create<float>(BS, b22));
|
|
|
|
B22->setStride(0, bStride);
|
|
|
|
|
|
|
|
PTensor C11(Tensor::create<float>(CS, c11));
|
|
|
|
C11->setStride(0, cStride);
|
|
|
|
PTensor C12(Tensor::create<float>(CS, c12));
|
|
|
|
C12->setStride(0, cStride);
|
|
|
|
PTensor C21(Tensor::create<float>(CS, c21));
|
|
|
|
C21->setStride(0, cStride);
|
|
|
|
PTensor C22(Tensor::create<float>(CS, c22));
|
|
|
|
C22->setStride(0, cStride);
|
|
|
|
|
|
|
|
{
|
|
|
|
// S3=A11-A21, T3=B22-B12, P7=S3*T3
|
2020-07-04 01:21:30 +08:00
|
|
|
auto f = [a11, a21, b22, b12, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride, numberThread, bUnit, bLSub, bHSub](int tId) {
|
|
|
|
MNNMATRIX_SUB_MULTITHREAD(xAddr, a11, a21, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);
|
|
|
|
MNNMATRIX_SUB_MULTITHREAD(yAddr, b22, b12, bLSub * bUnit / 4, bLSub * bUnit, bStride, bStride, bHSub);
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
2020-02-26 09:57:17 +08:00
|
|
|
mFunctions.emplace_back(std::make_pair(f, numberThread));
|
2020-07-04 01:21:30 +08:00
|
|
|
auto code = _generateMatMul(X.get(), Y.get(), C21.get(), nullptr, currentDepth, {});
|
2019-04-17 10:49:11 +08:00
|
|
|
if (code != NO_ERROR) {
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
// S1=A21+A22, T1=B12-B11, P5=S1T1
|
2020-07-04 01:21:30 +08:00
|
|
|
auto f = [a22, a21, b11, b12, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride, numberThread, bUnit, bLSub, bHSub](int tId) {
|
|
|
|
MNNMATRIX_ADD_MULTITHREAD(xAddr, a21, a22, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);
|
|
|
|
MNNMATRIX_SUB_MULTITHREAD(yAddr, b12, b11, bLSub * bUnit / 4, bLSub * bUnit, bStride, bStride, bHSub);
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
2020-02-26 09:57:17 +08:00
|
|
|
mFunctions.emplace_back(std::make_pair(f, numberThread));
|
2020-07-04 01:21:30 +08:00
|
|
|
auto code = _generateMatMul(X.get(), Y.get(), C22.get(), nullptr, currentDepth, {});
|
2019-04-17 10:49:11 +08:00
|
|
|
if (code != NO_ERROR) {
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
// S2=S1-A11, T2=B22-T1, P6=S2T2
|
2020-07-04 01:21:30 +08:00
|
|
|
auto f = [a11, b22, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride, numberThread, bUnit, bLSub, bHSub](int tId) {
|
|
|
|
MNNMATRIX_SUB_MULTITHREAD(xAddr, xAddr, a11, eSub * aUnit / 4, eSub * aUnit, eSub * aUnit, aStride, lSub);
|
|
|
|
MNNMATRIX_SUB_MULTITHREAD(yAddr, b22, yAddr, bLSub * bUnit / 4, bLSub * bUnit, bStride, bLSub * bUnit, bHSub);
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
2020-02-26 09:57:17 +08:00
|
|
|
mFunctions.emplace_back(std::make_pair(f, numberThread));
|
2020-07-04 01:21:30 +08:00
|
|
|
auto code = _generateMatMul(X.get(), Y.get(), C12.get(), nullptr, currentDepth, {});
|
2019-04-17 10:49:11 +08:00
|
|
|
if (code != NO_ERROR) {
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
// S4=A12-S2, P3=S4*B22, P1=A11*B11
|
2020-07-04 01:21:30 +08:00
|
|
|
auto f = [a12, xAddr, eSub, lSub, aStride, numberThread](int tId) {
|
|
|
|
MNNMATRIX_SUB_MULTITHREAD(xAddr, a12, xAddr, eSub * aUnit / 4, eSub * aUnit, aStride, eSub * aUnit, lSub);
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
2020-02-26 09:57:17 +08:00
|
|
|
mFunctions.emplace_back(std::make_pair(f, numberThread));
|
2020-07-04 01:21:30 +08:00
|
|
|
auto code = _generateMatMul(X.get(), B22.get(), C11.get(), nullptr, currentDepth, {});
|
2019-04-17 10:49:11 +08:00
|
|
|
if (code != NO_ERROR) {
|
|
|
|
return code;
|
|
|
|
}
|
2020-07-04 01:21:30 +08:00
|
|
|
code = _generateMatMul(A11.get(), B11.get(), CX.get(), nullptr, currentDepth, {});
|
2019-04-17 10:49:11 +08:00
|
|
|
if (code != NO_ERROR) {
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
// U2=P1+P6, U3=U2+P7, U4=U2+P5, U7=U3+P5
|
|
|
|
// U5=U4+P3, T4=T2-B21, P4=A22*T4
|
2020-07-04 01:21:30 +08:00
|
|
|
auto f = [c11, c12, c21, c22, b21, xAddr, yAddr, eSub, lSub, hSub, bStride, cStride, numberThread, bUnit, bHSub, bLSub](int tId) {
|
|
|
|
for (int y = tId; y < hSub; y+=numberThread) {
|
|
|
|
MNNStrassenMergeCFunction(c11 + y * cStride, c12 + y * cStride, c21 + y * cStride, c22 + y * cStride, xAddr + y * eSub * 4, 0, eSub, 1);
|
2020-02-26 09:57:17 +08:00
|
|
|
}
|
2020-07-04 01:21:30 +08:00
|
|
|
MNNMATRIX_SUB_MULTITHREAD(yAddr, yAddr, b21, bLSub * bUnit / 4, bLSub * bUnit, bLSub * bUnit, bStride, bHSub);
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
2020-02-26 09:57:17 +08:00
|
|
|
mFunctions.emplace_back(std::make_pair(f, numberThread));
|
2020-07-04 01:21:30 +08:00
|
|
|
auto code = _generateMatMul(A22.get(), Y.get(), C11.get(), nullptr, currentDepth, {});
|
2019-04-17 10:49:11 +08:00
|
|
|
if (code != NO_ERROR) {
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
// U6=U3-P4, P2=A12*B21, U1=P1+P2
|
2020-07-04 01:21:30 +08:00
|
|
|
auto f0 = [c11, c21, eSub, hSub, cStride, numberThread](int tId) {
|
|
|
|
auto cw = eSub * aUnit / 4;
|
|
|
|
MNNMATRIX_SUB_MULTITHREAD(c21, c21, c11, cw, cStride, cStride, cStride, hSub);
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
2020-02-26 09:57:17 +08:00
|
|
|
mFunctions.emplace_back(std::make_pair(f0, numberThread));
|
2020-07-04 01:21:30 +08:00
|
|
|
auto code = _generateMatMul(A12.get(), B21.get(), C11.get(), nullptr, currentDepth, {});
|
2019-04-17 10:49:11 +08:00
|
|
|
if (code != NO_ERROR) {
|
|
|
|
return code;
|
|
|
|
}
|
2020-07-04 01:21:30 +08:00
|
|
|
auto f1 = [c11, xAddr, eSub, hSub, cStride, numberThread](int tId) {
|
|
|
|
auto cw = eSub * aUnit / 4;
|
|
|
|
MNNMATRIX_ADD_MULTITHREAD(c11, c11, xAddr, cw, cStride, cStride, eSub * aUnit, hSub);
|
2019-04-17 10:49:11 +08:00
|
|
|
};
|
2020-02-26 09:57:17 +08:00
|
|
|
mFunctions.emplace_back(std::make_pair(f1, numberThread));
|
2020-07-04 01:21:30 +08:00
|
|
|
if (!postParameters.empty() && nullptr != COT) {
|
|
|
|
auto biasPtr = COT->host<float>();
|
|
|
|
if (1 == numberThread) {
|
|
|
|
auto postFunction = [c11, eSub, hSub, cStride, numberThread, biasPtr, postParameters](int tId) {
|
|
|
|
auto width = eSub * 2;
|
|
|
|
auto height = hSub * 2;
|
|
|
|
MNNAxByClampBroadcastC4(c11, c11, biasPtr, width, cStride, cStride, height, postParameters.data());
|
|
|
|
};
|
|
|
|
mFunctions.emplace_back(std::make_pair(postFunction, numberThread));
|
|
|
|
} else {
|
|
|
|
auto postFunction = [c11, eSub, hSub, cStride, numberThread, biasPtr, postParameters](int tId) {
|
|
|
|
auto width = eSub * 2;
|
|
|
|
auto height = hSub * 2;
|
|
|
|
for (int y = tId; y < height; y+=numberThread) {
|
|
|
|
MNNAxByClampBroadcastC4(c11 + y * cStride, c11 + y * cStride, biasPtr + y * 4, width, 0, 0, 1, postParameters.data());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
mFunctions.emplace_back(std::make_pair(postFunction, numberThread));
|
|
|
|
}
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
2020-07-04 01:21:30 +08:00
|
|
|
if (remainH > 0) {
|
|
|
|
auto lastH = hSub * 2;
|
|
|
|
auto cLast = CT->host<float>() + cStride * lastH;
|
|
|
|
auto lastHB = bHSub * 2;
|
|
|
|
auto bLast = BT->host<float>() + bStride * lastHB;
|
|
|
|
PTensor BLast(Tensor::create<float>(std::vector<int>{BT->length(0) - lastHB, BT->length(1), bUnit}, bLast));
|
|
|
|
PTensor CLast(Tensor::create<float>(std::vector<int>{remainH, eSub * 2, aUnit}, cLast));
|
|
|
|
PTensor ALast(Tensor::create<float>(std::vector<int>{l, eSub * 2, aUnit}, AT->host<float>()));
|
|
|
|
PTensor biasWrap;
|
|
|
|
const Tensor* bias = COT;
|
|
|
|
if (nullptr != bias) {
|
|
|
|
biasWrap.reset(Tensor::create<float>(std::vector<int>{remainH, 1, aUnit}, COT->host<float>() + 4 * lastH));
|
|
|
|
bias = biasWrap.get();
|
|
|
|
}
|
|
|
|
BLast->setStride(0, bStride);
|
2020-05-16 22:21:15 +08:00
|
|
|
CLast->setStride(0, cStride);
|
2020-07-04 01:21:30 +08:00
|
|
|
ALast->setStride(0, aStride);
|
|
|
|
auto code = _generateTrivalMatMul(AT, BLast.get(), CLast.get(), bias, postParameters);
|
|
|
|
if (NO_ERROR != code) {
|
|
|
|
return code;
|
|
|
|
}
|
2020-05-16 22:21:15 +08:00
|
|
|
}
|
2020-07-04 01:21:30 +08:00
|
|
|
if (remainE > 0) {
|
|
|
|
auto aLast = AT->host<float>() + eSub * 2 * aUnit;
|
|
|
|
auto cLast = CT->host<float>() + eSub * 2 * aUnit;
|
|
|
|
PTensor ALast(Tensor::create<float>(std::vector<int>{l, remainE, aUnit}, aLast));
|
|
|
|
PTensor CLast(Tensor::create<float>(std::vector<int>{h, remainE, aUnit}, cLast));
|
2019-04-17 10:49:11 +08:00
|
|
|
ALast->setStride(0, aStride);
|
|
|
|
CLast->setStride(0, cStride);
|
2020-07-04 01:21:30 +08:00
|
|
|
auto code = _generateTrivalMatMul(ALast.get(), BT, CLast.get(), COT, postParameters);
|
|
|
|
if (NO_ERROR != code) {
|
|
|
|
return code;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
2019-06-17 20:10:35 +08:00
|
|
|
void StrassenMatrixComputor::onReset() {
|
2019-04-17 10:49:11 +08:00
|
|
|
mFunctions.clear();
|
2019-06-17 20:10:35 +08:00
|
|
|
}
|
|
|
|
|
2020-07-04 01:21:30 +08:00
|
|
|
ErrorCode StrassenMatrixComputor::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const std::vector<float>& postParameters) {
|
|
|
|
MNN_ASSERT(inputs.size() == 2 || inputs.size() == 3);
|
2019-06-17 20:10:35 +08:00
|
|
|
MNN_ASSERT(outputs.size() == 1);
|
|
|
|
auto A = inputs[0];
|
|
|
|
auto BT = inputs[1];
|
|
|
|
auto C = outputs[0];
|
2020-07-04 01:21:30 +08:00
|
|
|
Tensor* CO = nullptr;
|
|
|
|
if (inputs.size() > 2) {
|
|
|
|
CO = inputs[2];
|
|
|
|
}
|
|
|
|
return _generateMatMul(A, BT, C, CO, 0, postParameters);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
2020-02-26 09:57:17 +08:00
|
|
|
void StrassenMatrixComputor::onExecute() {
|
2019-04-17 10:49:11 +08:00
|
|
|
// All is done in onResize, just execute it
|
|
|
|
for (auto& f : mFunctions) {
|
2020-02-26 09:57:17 +08:00
|
|
|
MNN_CONCURRENCY_BEGIN(tId, f.second) {
|
|
|
|
f.first(tId);
|
|
|
|
}
|
|
|
|
MNN_CONCURRENCY_END();
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
} // namespace MNN
|