MNN/source/backend/cpu/CPUInt8ToFloat.cpp

85 lines
2.9 KiB
C++
Raw Normal View History

//
// CPUInt8ToFloat.cpp
// MNN
//
// Created by MNN on 2019/5/22.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUInt8ToFloat.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "core/Concurrency.h"
#include "core/Macro.h"
#include "compute/Int8FunctionsOpt.h"
#include "core/TensorUtils.hpp"
namespace MNN {
CPUInt8ToFloat::CPUInt8ToFloat(Backend* backend, const MNN::Op* param) : Execution(backend) {
auto scale = param->main_as_QuantizedFloatParam();
const int scaleLen = scale->tensorScale()->size();
mScales.reset(Tensor::createDevice<float>({ALIGN_UP4(scaleLen)}));
mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
if (!mValid) {
return;
}
if (1 == scaleLen) {
mSingle = true;
for (int i = 0; i < 4; ++i) {
mScales->host<float>()[i] = scale->tensorScale()->data()[0];
}
} else {
memset(mScales->host<float>(), 0, ALIGN_UP4(scaleLen) * sizeof(float));
memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
}
}
CPUInt8ToFloat::~CPUInt8ToFloat() {
backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
}
ErrorCode CPUInt8ToFloat::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto input = inputs[0];
auto output = outputs[0];
MNN_ASSERT(MNN_DATA_FORMAT_NC4HW4 == TensorUtils::getDescribe(inputs[0])->dimensionFormat);
const auto inputDataPtr = input->host<int8_t>();
auto outputDataPtr = output->host<float>();
const auto scaleDataPtr = mScales->host<float>();
const int channels = input->channel();
int icDiv4 = UP_DIV(channels, 4);
const int batch = input->batch();
const int batchStride = input->stride(0);
int oc4Stride = 1;
for (int i = 2; i < input->dimensions(); ++i) {
oc4Stride *= input->length(i);
}
if (mSingle) {
oc4Stride = icDiv4 * oc4Stride;
icDiv4 = 1;
}
int total = batch * icDiv4;
MNN_CONCURRENCY_BEGIN(tId, total) {
int bIndex = tId / icDiv4;
int z = tId % icDiv4;
const auto srcChannelPtr = inputDataPtr + tId * oc4Stride * 4;
const auto scaleChannelPtr = scaleDataPtr + z * 4;
auto dstChannlePtr = outputDataPtr + tId * oc4Stride * 4;
MNNInt8ScaleToFloat(dstChannlePtr, srcChannelPtr, scaleChannelPtr, oc4Stride);
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
class CPUInt8ToFloatCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPUInt8ToFloat(backend, op);
}
};
REGISTER_CPU_OP_CREATOR(CPUInt8ToFloatCreator, OpType_Int8ToFloat);
} // namespace MNN