2019-07-11 13:56:52 +08:00
|
|
|
//
|
|
|
|
// CPUInt8ToFloat.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/5/22.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUInt8ToFloat.hpp"
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "core/Concurrency.h"
|
|
|
|
#include "core/Macro.h"
|
2020-12-10 17:53:24 +08:00
|
|
|
#include "compute/Int8FunctionsOpt.h"
|
2020-12-13 11:03:03 +08:00
|
|
|
#include "core/TensorUtils.hpp"
|
2019-07-11 13:56:52 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
CPUInt8ToFloat::CPUInt8ToFloat(Backend* backend, const MNN::Op* param) : Execution(backend) {
|
|
|
|
auto scale = param->main_as_QuantizedFloatParam();
|
|
|
|
const int scaleLen = scale->tensorScale()->size();
|
|
|
|
mScales.reset(Tensor::createDevice<float>({ALIGN_UP4(scaleLen)}));
|
|
|
|
mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
|
|
|
|
if (!mValid) {
|
|
|
|
return;
|
|
|
|
}
|
2020-12-13 11:03:03 +08:00
|
|
|
if (1 == scaleLen) {
|
|
|
|
mSingle = true;
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
mScales->host<float>()[i] = scale->tensorScale()->data()[0];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
memset(mScales->host<float>(), 0, ALIGN_UP4(scaleLen) * sizeof(float));
|
|
|
|
memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
|
|
|
|
}
|
2019-07-11 13:56:52 +08:00
|
|
|
}
|
|
|
|
CPUInt8ToFloat::~CPUInt8ToFloat() {
|
|
|
|
backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
|
|
|
|
}
|
|
|
|
ErrorCode CPUInt8ToFloat::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
|
|
const auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
2020-12-13 11:03:03 +08:00
|
|
|
MNN_ASSERT(MNN_DATA_FORMAT_NC4HW4 == TensorUtils::getDescribe(inputs[0])->dimensionFormat);
|
2019-07-11 13:56:52 +08:00
|
|
|
|
|
|
|
const auto inputDataPtr = input->host<int8_t>();
|
|
|
|
auto outputDataPtr = output->host<float>();
|
|
|
|
const auto scaleDataPtr = mScales->host<float>();
|
|
|
|
const int channels = input->channel();
|
2020-12-13 11:03:03 +08:00
|
|
|
int icDiv4 = UP_DIV(channels, 4);
|
2019-07-11 13:56:52 +08:00
|
|
|
const int batch = input->batch();
|
|
|
|
const int batchStride = input->stride(0);
|
2020-10-30 10:05:42 +08:00
|
|
|
int oc4Stride = 1;
|
|
|
|
for (int i = 2; i < input->dimensions(); ++i) {
|
|
|
|
oc4Stride *= input->length(i);
|
|
|
|
}
|
2020-12-13 11:03:03 +08:00
|
|
|
if (mSingle) {
|
|
|
|
oc4Stride = icDiv4 * oc4Stride;
|
|
|
|
icDiv4 = 1;
|
|
|
|
}
|
|
|
|
int total = batch * icDiv4;
|
2019-07-11 13:56:52 +08:00
|
|
|
|
2020-12-13 11:03:03 +08:00
|
|
|
MNN_CONCURRENCY_BEGIN(tId, total) {
|
|
|
|
int bIndex = tId / icDiv4;
|
|
|
|
int z = tId % icDiv4;
|
|
|
|
const auto srcChannelPtr = inputDataPtr + tId * oc4Stride * 4;
|
|
|
|
const auto scaleChannelPtr = scaleDataPtr + z * 4;
|
|
|
|
auto dstChannlePtr = outputDataPtr + tId * oc4Stride * 4;
|
|
|
|
MNNInt8ScaleToFloat(dstChannlePtr, srcChannelPtr, scaleChannelPtr, oc4Stride);
|
2019-07-11 13:56:52 +08:00
|
|
|
}
|
2020-12-13 11:03:03 +08:00
|
|
|
MNN_CONCURRENCY_END();
|
2019-07-11 13:56:52 +08:00
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUInt8ToFloatCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
|
|
const MNN::Op* op, Backend* backend) const override {
|
|
|
|
return new CPUInt8ToFloat(backend, op);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUInt8ToFloatCreator, OpType_Int8ToFloat);
|
|
|
|
|
|
|
|
} // namespace MNN
|