MNN/source/backend/cpu/CPUQuantizedMaxPool.cpp

125 lines
5.3 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUQuantizedMaxPool.cpp
// MNN
//
// Created by MNN on 2018/08/08.
// Copyright © 2018, Alibaba Group Holding Limited
//
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
#ifdef MNN_SUPPORT_TFLITE_QUAN
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUQuantizedMaxPool.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/CPUQuantizationUtils.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "core/Macro.h"
2019-04-17 10:49:11 +08:00
namespace MNN {
CPUQuantizedMaxPool::CPUQuantizedMaxPool(Backend *backend, const Op *op) : Execution(backend) {
auto mp = op->main_as_QuantizedMaxPool();
mIstflite = (mp->modelFormat() == ModeFormat_TFLITE);
mKernelWidth = mp->kernelX();
mKernelHeight = mp->kernelY();
mPadWidth = mp->padX();
mPadHeight = mp->padY();
mStrideWidth = mp->strideX();
mStrideHeight = mp->strideY();
mPadMode = mp->padType();
}
ErrorCode CPUQuantizedMaxPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
MNN_ASSERT(input->buffer().dimensions == 4);
if (!mIstflite) {
MNN_ASSERT(inputs.size() == 3);
MNN_ASSERT(outputs.size() == 3);
const float minInput = inputs[1]->host<float>()[0];
const float maxInput = inputs[2]->host<float>()[0];
((float *)outputs[1]->buffer().host)[0] = minInput;
((float *)outputs[2]->buffer().host)[0] = maxInput;
}
// input : nhwc
const int32_t inBatch = input->buffer().dim[0].extent;
const int32_t inRows = input->buffer().dim[1].extent;
const int32_t inCols = input->buffer().dim[2].extent;
const int32_t inChannel = input->buffer().dim[3].extent;
int32_t padRows = mPadHeight;
int32_t padCols = mPadWidth;
const int32_t windowRows = mKernelHeight;
const int32_t windowCols = mKernelWidth;
const int32_t rowStride = mStrideHeight;
const int32_t colStride = mStrideWidth;
const int32_t outHeight = output->buffer().dim[1].extent;
const int32_t outWidth = output->buffer().dim[2].extent;
switch (mPadMode) {
case PoolPadType_VALID:
padRows = padCols = 0;
break;
case PoolPadType_SAME: {
auto widthNeeded = (outWidth - 1) * colStride + windowCols - inCols;
auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
mPadWidth = widthNeeded > 0 ? widthNeeded / 2 : 0;
mPadHeight = heightNeeded > 0 ? heightNeeded / 2 : 0;
break;
}
default:
MNN_ASSERT(false);
break;
}
uint8_t *inputPtr = (uint8_t *)input->buffer().host;
uint8_t *outputPtr = (uint8_t *)output->buffer().host;
const uint8_t minAsQuantized = 0;
for (int batchIndex = 0; batchIndex < inBatch; batchIndex++) {
uint8_t *outputBatchPtr = outputPtr + batchIndex * outWidth * outHeight * inChannel;
uint8_t *inputBatchPtr = inputPtr + batchIndex * inCols * inRows * inChannel;
for (int channelIndex = 0; channelIndex < inChannel; channelIndex++) {
for (int outHeightIndex = 0; outHeightIndex < outHeight; outHeightIndex++) {
for (int outWidthIndex = 0; outWidthIndex < outWidth; outWidthIndex++) {
uint8_t maxTemp = std::numeric_limits<uint8_t>::min();
int32_t inputHeightIndex = outHeightIndex * rowStride - padRows;
int32_t inputWidthIndex = outWidthIndex * colStride - padCols;
uint8_t *outputTemp = (uint8_t *)(outputBatchPtr + outHeightIndex * outWidth * inChannel +
outWidthIndex * inChannel + channelIndex);
for (int windowRowsIndex = 0; windowRowsIndex < windowRows; windowRowsIndex++) {
for (int windowColsIndex = 0; windowColsIndex < windowCols; windowColsIndex++) {
if (((inputWidthIndex + windowColsIndex) < 0) ||
((inputWidthIndex + windowColsIndex) >= inCols) ||
((inputHeightIndex + windowRowsIndex) < 0) ||
((inputHeightIndex + windowRowsIndex) >= inRows)) {
maxTemp = std::max(minAsQuantized, maxTemp);
} else {
maxTemp = std::max(
inputBatchPtr[(inputHeightIndex + windowRowsIndex) * inCols * inChannel +
(inputWidthIndex + windowColsIndex) * inChannel + channelIndex],
maxTemp);
}
}
}
*outputTemp = maxTemp;
}
}
}
}
return NO_ERROR;
}
class CPUQuantizedMaxPoolCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
return new CPUQuantizedMaxPool(backend, op);
}
};
REGISTER_CPU_OP_CREATOR(CPUQuantizedMaxPoolCreator, OpType_QuantizedMaxPool);
} // namespace MNN
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
#endif