mirror of https://github.com/alibaba/MNN.git
125 lines
5.3 KiB
C++
125 lines
5.3 KiB
C++
//
|
|
// CPUQuantizedMaxPool.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/08/08.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
#ifdef MNN_SUPPORT_TFLITE_QUAN
|
|
#include "backend/cpu/CPUQuantizedMaxPool.hpp"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/CPUQuantizationUtils.hpp"
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
#include "core/Macro.h"
|
|
|
|
namespace MNN {
|
|
|
|
CPUQuantizedMaxPool::CPUQuantizedMaxPool(Backend *backend, const Op *op) : Execution(backend) {
|
|
auto mp = op->main_as_QuantizedMaxPool();
|
|
mIstflite = (mp->modelFormat() == ModeFormat_TFLITE);
|
|
mKernelWidth = mp->kernelX();
|
|
mKernelHeight = mp->kernelY();
|
|
mPadWidth = mp->padX();
|
|
mPadHeight = mp->padY();
|
|
mStrideWidth = mp->strideX();
|
|
mStrideHeight = mp->strideY();
|
|
mPadMode = mp->padType();
|
|
}
|
|
|
|
ErrorCode CPUQuantizedMaxPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
|
|
MNN_ASSERT(input->buffer().dimensions == 4);
|
|
|
|
if (!mIstflite) {
|
|
MNN_ASSERT(inputs.size() == 3);
|
|
MNN_ASSERT(outputs.size() == 3);
|
|
const float minInput = inputs[1]->host<float>()[0];
|
|
const float maxInput = inputs[2]->host<float>()[0];
|
|
((float *)outputs[1]->buffer().host)[0] = minInput;
|
|
((float *)outputs[2]->buffer().host)[0] = maxInput;
|
|
}
|
|
|
|
// input : nhwc
|
|
const int32_t inBatch = input->buffer().dim[0].extent;
|
|
const int32_t inRows = input->buffer().dim[1].extent;
|
|
const int32_t inCols = input->buffer().dim[2].extent;
|
|
const int32_t inChannel = input->buffer().dim[3].extent;
|
|
|
|
int32_t padRows = mPadHeight;
|
|
int32_t padCols = mPadWidth;
|
|
const int32_t windowRows = mKernelHeight;
|
|
const int32_t windowCols = mKernelWidth;
|
|
const int32_t rowStride = mStrideHeight;
|
|
const int32_t colStride = mStrideWidth;
|
|
const int32_t outHeight = output->buffer().dim[1].extent;
|
|
const int32_t outWidth = output->buffer().dim[2].extent;
|
|
|
|
switch (mPadMode) {
|
|
case PoolPadType_VALID:
|
|
padRows = padCols = 0;
|
|
break;
|
|
case PoolPadType_SAME: {
|
|
auto widthNeeded = (outWidth - 1) * colStride + windowCols - inCols;
|
|
auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
|
|
mPadWidth = widthNeeded > 0 ? widthNeeded / 2 : 0;
|
|
mPadHeight = heightNeeded > 0 ? heightNeeded / 2 : 0;
|
|
break;
|
|
}
|
|
default:
|
|
MNN_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
uint8_t *inputPtr = (uint8_t *)input->buffer().host;
|
|
uint8_t *outputPtr = (uint8_t *)output->buffer().host;
|
|
const uint8_t minAsQuantized = 0;
|
|
|
|
for (int batchIndex = 0; batchIndex < inBatch; batchIndex++) {
|
|
uint8_t *outputBatchPtr = outputPtr + batchIndex * outWidth * outHeight * inChannel;
|
|
uint8_t *inputBatchPtr = inputPtr + batchIndex * inCols * inRows * inChannel;
|
|
|
|
for (int channelIndex = 0; channelIndex < inChannel; channelIndex++) {
|
|
for (int outHeightIndex = 0; outHeightIndex < outHeight; outHeightIndex++) {
|
|
for (int outWidthIndex = 0; outWidthIndex < outWidth; outWidthIndex++) {
|
|
uint8_t maxTemp = std::numeric_limits<uint8_t>::min();
|
|
int32_t inputHeightIndex = outHeightIndex * rowStride - padRows;
|
|
int32_t inputWidthIndex = outWidthIndex * colStride - padCols;
|
|
uint8_t *outputTemp = (uint8_t *)(outputBatchPtr + outHeightIndex * outWidth * inChannel +
|
|
outWidthIndex * inChannel + channelIndex);
|
|
for (int windowRowsIndex = 0; windowRowsIndex < windowRows; windowRowsIndex++) {
|
|
for (int windowColsIndex = 0; windowColsIndex < windowCols; windowColsIndex++) {
|
|
if (((inputWidthIndex + windowColsIndex) < 0) ||
|
|
((inputWidthIndex + windowColsIndex) >= inCols) ||
|
|
((inputHeightIndex + windowRowsIndex) < 0) ||
|
|
((inputHeightIndex + windowRowsIndex) >= inRows)) {
|
|
maxTemp = std::max(minAsQuantized, maxTemp);
|
|
} else {
|
|
maxTemp = std::max(
|
|
inputBatchPtr[(inputHeightIndex + windowRowsIndex) * inCols * inChannel +
|
|
(inputWidthIndex + windowColsIndex) * inChannel + channelIndex],
|
|
maxTemp);
|
|
}
|
|
}
|
|
}
|
|
*outputTemp = maxTemp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUQuantizedMaxPoolCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const {
|
|
return new CPUQuantizedMaxPool(backend, op);
|
|
}
|
|
};
|
|
REGISTER_CPU_OP_CREATOR(CPUQuantizedMaxPoolCreator, OpType_QuantizedMaxPool);
|
|
} // namespace MNN
|
|
#endif
|