2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUReshape.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/07/18.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUReshape.hpp"
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "core/TensorUtils.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
2019-09-01 19:25:26 +08:00
|
|
|
CPUReshape::CPUReshape(Backend *b, MNN_DATA_FORMAT midFormat) : MNN::Execution(b), mStorage(2) {
|
|
|
|
mMidFormat = midFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUReshape::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
|
|
|
|
auto input = inputs[0];
|
2019-09-01 19:25:26 +08:00
|
|
|
auto output = outputs[0];
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-08-23 11:13:29 +08:00
|
|
|
if (TensorUtils::getDescribe(input)->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
|
|
|
|
return NO_ERROR;
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
2019-12-27 22:16:57 +08:00
|
|
|
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
int totalSize = 1;
|
2019-04-17 10:49:11 +08:00
|
|
|
for (int i = 0; i < input->buffer().dimensions; ++i) {
|
|
|
|
totalSize *= input->buffer().dim[i].extent;
|
|
|
|
}
|
2019-08-23 11:13:29 +08:00
|
|
|
TensorUtils::getDescribe(&mStorage)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
|
2019-04-17 10:49:11 +08:00
|
|
|
mStorage.buffer().dim[0].extent = 1;
|
|
|
|
mStorage.buffer().dim[1].extent = totalSize;
|
|
|
|
mStorage.buffer().dimensions = 2;
|
|
|
|
mStorage.buffer().type = input->getType();
|
|
|
|
backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
|
|
|
|
backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
|
2019-12-27 22:16:57 +08:00
|
|
|
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
auto convertTensorMeta = [&](const Tensor* tensor, Tensor* wrapTensor) {
|
|
|
|
wrapTensor->buffer().host = mStorage.buffer().host;
|
|
|
|
wrapTensor->buffer().dimensions = tensor->dimensions();
|
|
|
|
wrapTensor->buffer().type = tensor->buffer().type;
|
|
|
|
TensorUtils::getDescribe(wrapTensor)->dimensionFormat = mMidFormat;
|
|
|
|
auto tensorFormat = TensorUtils::getDescribe(tensor)->dimensionFormat;
|
|
|
|
bool originCaffeFormat = (tensorFormat == MNN_DATA_FORMAT_NCHW || tensorFormat == MNN_DATA_FORMAT_NC4HW4);
|
|
|
|
bool wrapCaffeFormat = (mMidFormat == MNN_DATA_FORMAT_NCHW || mMidFormat == MNN_DATA_FORMAT_NC4HW4);
|
|
|
|
bool originTfFormat = (tensorFormat == MNN_DATA_FORMAT_NHWC || tensorFormat == MNN_DATA_FORMAT_NHWC4);
|
|
|
|
bool wrapTfFormat = (mMidFormat == MNN_DATA_FORMAT_NHWC || mMidFormat == MNN_DATA_FORMAT_NHWC4);
|
|
|
|
if ((originCaffeFormat && wrapCaffeFormat) || (originTfFormat && wrapTfFormat)) {
|
|
|
|
TensorUtils::copyShape(tensor, wrapTensor);
|
|
|
|
} else if (originCaffeFormat && wrapTfFormat) {
|
|
|
|
for (int i = 1; i < wrapTensor->dimensions() - 1; ++i) {
|
|
|
|
wrapTensor->setLength(i, tensor->length(i + 1));
|
|
|
|
}
|
|
|
|
wrapTensor->setLength(0, tensor->length(0));
|
|
|
|
wrapTensor->setLength(wrapTensor->dimensions() - 1, tensor->length(1));
|
|
|
|
} else if (originTfFormat && wrapCaffeFormat) {
|
|
|
|
for (int i = 2; i < wrapTensor->dimensions(); ++i) {
|
|
|
|
wrapTensor->setLength(i, tensor->length(i - 1));
|
|
|
|
}
|
|
|
|
wrapTensor->setLength(0, tensor->length(0));
|
|
|
|
wrapTensor->setLength(1, tensor->length(tensor->dimensions() - 1));
|
|
|
|
} else {
|
|
|
|
// will not reach here
|
|
|
|
MNN_ASSERT(false);
|
|
|
|
}
|
|
|
|
TensorUtils::setLinearLayout(wrapTensor);
|
|
|
|
};
|
2019-12-27 22:16:57 +08:00
|
|
|
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
convertTensorMeta(input, &mWrapTensorForInput);
|
|
|
|
convertTensorMeta(output, &mWrapTensorForOutput);
|
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUReshape::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
2019-08-23 11:13:29 +08:00
|
|
|
if (TensorUtils::getDescribe(inputs[0])->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
auto outputPtr = outputs[0]->host<uint8_t>();
|
|
|
|
auto inputPtr = inputs[0]->host<uint8_t>();
|
|
|
|
auto totalSize = inputs[0]->size();
|
|
|
|
::memcpy(outputPtr, inputPtr, totalSize);
|
2019-08-23 11:13:29 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
|
|
|
|
|
|
|
backend()->onCopyBuffer(input, &mWrapTensorForInput);
|
|
|
|
backend()->onCopyBuffer(&mWrapTensorForOutput, output);
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUReshapeCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const override {
|
2019-09-01 19:25:26 +08:00
|
|
|
return new CPUReshape(backend, op->main_as_Reshape()->dimType());
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUReshapeCreator, OpType_Reshape);
|
|
|
|
|
|
|
|
} // namespace MNN
|