| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  CPUReshape.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2018/07/18.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUReshape.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/CPUBackend.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/compute/CommonOptFunction.h"
 | 
					
						
							|  |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | #include "core/TensorUtils.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-01 19:25:26 +08:00
										 |  |  | CPUReshape::CPUReshape(Backend *b, MNN_DATA_FORMAT midFormat) : MNN::Execution(b), mStorage(2) { | 
					
						
							|  |  |  |     mMidFormat = midFormat; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ErrorCode CPUReshape::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { | 
					
						
							|  |  |  |     MNN_ASSERT(1 == inputs.size() || 2 == inputs.size()); | 
					
						
							|  |  |  |     MNN_ASSERT(1 == outputs.size()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     auto input    = inputs[0]; | 
					
						
							| 
									
										
										
										
											2019-09-01 19:25:26 +08:00
										 |  |  |     auto output   = outputs[0]; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-08-23 11:13:29 +08:00
										 |  |  |     if (TensorUtils::getDescribe(input)->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) { | 
					
						
							|  |  |  |         return NO_ERROR; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |     int totalSize = 1; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     for (int i = 0; i < input->buffer().dimensions; ++i) { | 
					
						
							|  |  |  |         totalSize *= input->buffer().dim[i].extent; | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-08-23 11:13:29 +08:00
										 |  |  |     TensorUtils::getDescribe(&mStorage)->dimensionFormat = MNN_DATA_FORMAT_NCHW; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     mStorage.buffer().dim[0].extent = 1; | 
					
						
							|  |  |  |     mStorage.buffer().dim[1].extent = totalSize; | 
					
						
							|  |  |  |     mStorage.buffer().dimensions    = 2; | 
					
						
							|  |  |  |     mStorage.buffer().type          = input->getType(); | 
					
						
							|  |  |  |     backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC); | 
					
						
							|  |  |  |     backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |     auto convertTensorMeta = [&](const Tensor* tensor, Tensor* wrapTensor) { | 
					
						
							|  |  |  |         wrapTensor->buffer().host       = mStorage.buffer().host; | 
					
						
							|  |  |  |         wrapTensor->buffer().dimensions = tensor->dimensions(); | 
					
						
							|  |  |  |         wrapTensor->buffer().type       = tensor->buffer().type; | 
					
						
							|  |  |  |         TensorUtils::getDescribe(wrapTensor)->dimensionFormat = mMidFormat; | 
					
						
							|  |  |  |         auto tensorFormat      = TensorUtils::getDescribe(tensor)->dimensionFormat; | 
					
						
							|  |  |  |         bool originCaffeFormat = (tensorFormat == MNN_DATA_FORMAT_NCHW || tensorFormat == MNN_DATA_FORMAT_NC4HW4); | 
					
						
							|  |  |  |         bool wrapCaffeFormat   = (mMidFormat == MNN_DATA_FORMAT_NCHW || mMidFormat == MNN_DATA_FORMAT_NC4HW4); | 
					
						
							|  |  |  |         bool originTfFormat    = (tensorFormat == MNN_DATA_FORMAT_NHWC || tensorFormat == MNN_DATA_FORMAT_NHWC4); | 
					
						
							|  |  |  |         bool wrapTfFormat      = (mMidFormat == MNN_DATA_FORMAT_NHWC || mMidFormat == MNN_DATA_FORMAT_NHWC4); | 
					
						
							|  |  |  |         if ((originCaffeFormat && wrapCaffeFormat) || (originTfFormat && wrapTfFormat)) { | 
					
						
							|  |  |  |             TensorUtils::copyShape(tensor, wrapTensor); | 
					
						
							|  |  |  |         } else if (originCaffeFormat && wrapTfFormat) { | 
					
						
							|  |  |  |             for (int i = 1; i < wrapTensor->dimensions() - 1; ++i) { | 
					
						
							|  |  |  |                 wrapTensor->setLength(i, tensor->length(i + 1)); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             wrapTensor->setLength(0, tensor->length(0)); | 
					
						
							|  |  |  |             wrapTensor->setLength(wrapTensor->dimensions() - 1, tensor->length(1)); | 
					
						
							|  |  |  |         } else if (originTfFormat && wrapCaffeFormat) { | 
					
						
							|  |  |  |             for (int i = 2; i < wrapTensor->dimensions(); ++i) { | 
					
						
							|  |  |  |                 wrapTensor->setLength(i, tensor->length(i - 1)); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             wrapTensor->setLength(0, tensor->length(0)); | 
					
						
							|  |  |  |             wrapTensor->setLength(1, tensor->length(tensor->dimensions() - 1)); | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |             // will not reach here
 | 
					
						
							|  |  |  |             MNN_ASSERT(false); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         TensorUtils::setLinearLayout(wrapTensor); | 
					
						
							|  |  |  |     }; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |     convertTensorMeta(input, &mWrapTensorForInput); | 
					
						
							|  |  |  |     convertTensorMeta(output, &mWrapTensorForOutput); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ErrorCode CPUReshape::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { | 
					
						
							|  |  |  |     MNN_ASSERT(1 == inputs.size() || 2 == inputs.size()); | 
					
						
							|  |  |  |     MNN_ASSERT(1 == outputs.size()); | 
					
						
							| 
									
										
										
										
											2019-08-23 11:13:29 +08:00
										 |  |  |     if (TensorUtils::getDescribe(inputs[0])->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) { | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |         auto outputPtr = outputs[0]->host<uint8_t>(); | 
					
						
							|  |  |  |         auto inputPtr = inputs[0]->host<uint8_t>(); | 
					
						
							|  |  |  |         auto totalSize = inputs[0]->size(); | 
					
						
							|  |  |  |         ::memcpy(outputPtr, inputPtr, totalSize); | 
					
						
							| 
									
										
										
										
											2019-08-23 11:13:29 +08:00
										 |  |  |         return NO_ERROR; | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     auto input  = inputs[0]; | 
					
						
							|  |  |  |     auto output = outputs[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     backend()->onCopyBuffer(input, &mWrapTensorForInput); | 
					
						
							|  |  |  |     backend()->onCopyBuffer(&mWrapTensorForOutput, output); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CPUReshapeCreator : public CPUBackend::Creator { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, | 
					
						
							|  |  |  |                                 const MNN::Op *op, Backend *backend) const override { | 
					
						
							| 
									
										
										
										
											2019-09-01 19:25:26 +08:00
										 |  |  |         return new CPUReshape(backend, op->main_as_Reshape()->dimType()); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | REGISTER_CPU_OP_CREATOR(CPUReshapeCreator, OpType_Reshape); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } // namespace MNN
 |