2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUConvolution.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/07/15.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUConvolution.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
#include <math.h>
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
|
|
#include "core/Macro.h"
|
2020-07-04 01:21:30 +08:00
|
|
|
#include <limits>
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/compute/ConvolutionFloatFactory.h"
|
2019-06-17 20:10:35 +08:00
|
|
|
//#define MNN_OPEN_TIME_TRACE
|
2019-12-27 22:16:57 +08:00
|
|
|
#include <MNN/AutoTime.hpp>
|
2020-03-12 20:29:43 +08:00
|
|
|
#include "core/ConvolutionCommon.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
CPUConvolution::CPUConvolution(const Convolution2DCommon *convOp, Backend *b) : MNN::Execution(b), mCommon(convOp) {
|
|
|
|
mPostFunction = getPostFunction();
|
|
|
|
}
|
2020-07-04 01:21:30 +08:00
|
|
|
std::vector<float> CPUConvolution::getPostParameters() const {
|
|
|
|
std::vector<float> postParameters = {
|
|
|
|
1.0f,
|
|
|
|
1.0f,
|
|
|
|
-std::numeric_limits<float>().max(),
|
|
|
|
std::numeric_limits<float>().max(),
|
|
|
|
};
|
|
|
|
if (mCommon->relu()) {
|
|
|
|
postParameters[2] = 0.0f;
|
|
|
|
}
|
|
|
|
if (mCommon->relu6()) {
|
|
|
|
postParameters[2] = 0.0f;
|
|
|
|
postParameters[3] = 6.0f;
|
|
|
|
}
|
|
|
|
return postParameters;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
int CPUConvolution::reorderWeightSize(int depth, int outputCount, int kernelSize, int unit) {
|
|
|
|
int unit2 = unit * unit;
|
|
|
|
return UP_DIV(outputCount, unit) * UP_DIV(depth, unit) * kernelSize * unit2;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CPUConvolution::reorderWeight(float *dest, const float *source, int depth, int outputCount, int kernelSize,
|
2019-06-17 20:10:35 +08:00
|
|
|
float *cache) {
|
|
|
|
auto alignDepth = ALIGN_UP4(depth);
|
2019-04-17 10:49:11 +08:00
|
|
|
for (int b = 0; b < outputCount; ++b) {
|
2019-06-17 20:10:35 +08:00
|
|
|
auto dst = cache + b * alignDepth * kernelSize;
|
|
|
|
auto src = source + b * depth * kernelSize;
|
|
|
|
MNNPackC4(dst, src, kernelSize, depth);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
2019-06-17 20:10:35 +08:00
|
|
|
MNNPackC4(dest, cache, kernelSize * ALIGN_UP4(depth), outputCount);
|
2020-04-10 14:44:01 +08:00
|
|
|
auto count = UP_DIV(depth, 4) * kernelSize * UP_DIV(outputCount, 4);
|
|
|
|
MNNReorder4x4ByPlatform(dest, count);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUConvolution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
2020-03-12 20:29:43 +08:00
|
|
|
auto pad = ConvolutionCommon::convolutionPad(input, output, mCommon);
|
|
|
|
mPadY = pad.second;
|
|
|
|
mPadX = pad.first;
|
2019-04-17 10:49:11 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
CPUConvolution::POSTFUNCTION CPUConvolution::getPostFunction() const {
|
|
|
|
if (mCommon->relu()) {
|
|
|
|
return MNNAddBiasRelu;
|
|
|
|
}
|
|
|
|
if (mCommon->relu6()) {
|
|
|
|
return MNNAddBiasRelu6;
|
|
|
|
}
|
|
|
|
return MNNAddBias;
|
|
|
|
}
|
|
|
|
|
|
|
|
class ConvolutionFactory : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
|
|
return ConvolutionFloatFactory::create(inputs, outputs, op, backend);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(ConvolutionFactory, OpType_Convolution);
|
|
|
|
} // namespace MNN
|