MNN/source/shape/ShapeSlice.cpp

101 lines
4.1 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeSlice.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/SizeComputer.hpp"
#include <algorithm>
2019-04-17 10:49:11 +08:00
namespace MNN {
class SliceComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size());
auto outputSize = (int)outputs.size();
2019-04-17 10:49:11 +08:00
auto slice = op->main_as_Slice();
auto& input = inputs[0]->buffer();
int axis = slice->axis();
if (axis < 0) {
2019-04-17 10:49:11 +08:00
axis += input.dimensions;
}
if (MNN::NetSource_CAFFE == slice->sourceType()) {
// caffe Slice
int previous = 0;
for (int i = 0; i < slice->slicePoints()->size(); ++i) {
int sliceIndex = slice->slicePoints()->data()[i];
auto& output = outputs[i]->buffer();
output.dimensions = input.dimensions;
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
output.type = input.type;
output.dim[axis].extent = sliceIndex - previous;
previous = sliceIndex;
}
// Compute Last
auto& output = outputs[outputs.size() - 1]->buffer();
2020-04-27 09:46:13 +08:00
output.dimensions = input.dimensions;
output.type = input.type;
2019-04-17 10:49:11 +08:00
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
output.dim[axis].extent = input.dim[axis].extent - previous;
} else {
// tensorflow Split
if (1 == slice->slicePoints()->size()) {
// scalar
int numSplits = slice->slicePoints()->data()[0];
numSplits = std::min(numSplits, outputSize);
2019-04-17 10:49:11 +08:00
MNN_ASSERT(0 == input.dim[axis].extent % numSplits);
const int splitDim = input.dim[axis].extent / numSplits;
for (int i = 0; i < numSplits; i++) {
auto& output = outputs[i]->buffer();
output.dimensions = input.dimensions;
output.type = input.type;
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
output.dim[axis].extent = splitDim;
}
} else {
// one dimension tensor, ex: [5,30]=>[5,4]+[5,15]+[5,11], slicePoints is [4, 15, 11]
int numberSplits = slice->slicePoints()->size();
numberSplits = std::min(numberSplits, outputSize);
int determineTensorIndex = -1;
int maxSize = 0;
for (int i = 0; i < numberSplits; i++) {
2019-04-17 10:49:11 +08:00
auto& output = outputs[i]->buffer();
output.type = input.type;
output.dimensions = input.dimensions;
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
auto length = slice->slicePoints()->data()[i];
if (-1 != length) {
output.dim[axis].extent = length;
maxSize += length;
} else {
if (determineTensorIndex >= 0) {
// Don't support two -1 points
return false;
}
determineTensorIndex = i;
}
}
if (determineTensorIndex >= 0) {
auto& output = outputs[determineTensorIndex]->buffer();
output.dim[axis].extent = input.dim[axis].extent - maxSize;
2019-04-17 10:49:11 +08:00
}
}
}
for (int i=0; i<outputs.size(); ++i) {
TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
}
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(SliceComputer, OpType_Slice);
} // namespace MNN