MNN/source/backend/opencl/execution/buffer/MatmulBufExecution.cpp

253 lines
11 KiB
C++
Raw Normal View History

//
// MatmulBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/MatmulBufExecution.hpp"
namespace MNN {
namespace OpenCL {
MatMulBufExecution::MatMulBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend,
2024-04-19 11:58:21 +08:00
bool transposeA, bool transposeB) : CommonExecution(backend, op)
, mTransposeA(transposeA), mTransposeB(transposeB){
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
}
2024-04-19 11:58:21 +08:00
ErrorCode MatMulBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
auto runtime = mOpenCLBackend->getOpenCLRuntime();
Tensor *input0 = inputs[0];
Tensor *input1 = inputs[1];
Tensor *output = outputs[0];
std::vector<int> input0Shape = tensorShapeFormat(input0);
std::vector<int> input1Shape = tensorShapeFormat(input1);
std::vector<int> outputShape = tensorShapeFormat(output);
2024-06-03 20:09:34 +08:00
2024-04-19 11:58:21 +08:00
std::set<std::string> buildOptions;
2024-06-03 20:09:34 +08:00
int M = input0Shape[0];
int K = input0Shape[3];
2024-04-19 11:58:21 +08:00
if(mTransposeA) {
2024-06-03 20:09:34 +08:00
M = input0Shape[3];
K = input0Shape[0];
2024-04-19 11:58:21 +08:00
}
2024-06-03 20:09:34 +08:00
int N = mTransposeB ? input1Shape[0]: input1Shape[3];
const int K_4 = UP_DIV(K, 4);
const int N_4 = UP_DIV(N, 4);
const int M_4 = UP_DIV(M, 4);
// set large tile
unsigned int tileM = 128;
unsigned int tileN = 128;
unsigned int tileK = 32;
unsigned int localM = 32;
unsigned int localN = 8;
2024-04-19 11:58:21 +08:00
if(inputs.size() > 2) {
buildOptions.emplace("-DBIAS");
}
2024-06-03 20:09:34 +08:00
bool canUseTile = (M % tileM == 0) && \
(N % tileN == 0) && \
(K % tileK == 0);
2024-08-24 15:46:21 +08:00
bool canUseLargeTile = canUseTile && mTransposeA && !mTransposeB;
2024-06-03 20:09:34 +08:00
if (!canUseLargeTile) {
// set small tile
tileM = 64;
tileN = 128;
tileK = 8;
localM = 16;
localN = 16;
canUseTile = (M % tileM == 0) && (N % tileN == 0) && (K % tileK == 0);
}
if(canUseLargeTile) {
// Match with Large tileM->MWG tileN->NWG tileK->KWG localM->MDIMA localN->NDIMC
2024-08-24 15:46:21 +08:00
uint32_t layout = 4;
uint32_t batch = 1;
std::vector<uint32_t> param;
if(inputs.size() == 2) {
param = getGemmParams({(uint32_t)M, (uint32_t)N, (uint32_t)K, layout, batch, (uint32_t)0}, {openCLBuffer(input0), openCLBuffer(input1), openCLBuffer(output)}, mOpenCLBackend->getOpenCLRuntime());
} else {
param = getGemmParams({(uint32_t)M, (uint32_t)N, (uint32_t)K, layout, batch, (uint32_t)1}, {openCLBuffer(input0), openCLBuffer(input1), openCLBuffer(output), openCLBuffer(inputs[2])}, mOpenCLBackend->getOpenCLRuntime());
}
int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13];
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
buildOptions.emplace("-DSA=" + std::to_string(SA));
buildOptions.emplace("-DSB=" + std::to_string(SB));
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
if(layout >= 4) {
buildOptions.emplace("-DOUTPUTMN");
}
if(inputs.size() > 2) {
buildOptions.emplace(" -DBIAS_TYPE=1");
}
2024-06-03 20:09:34 +08:00
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
buildOptions.emplace("-DUSE_CL_MAD=1");
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
}
2024-08-24 15:46:21 +08:00
2024-06-03 20:09:34 +08:00
unit.kernel = runtime->buildKernel("matmul_params_buf", "Xgemm", buildOptions);
} else if(canUseTile) {
if(mTransposeA) {
buildOptions.emplace(" -DTRANSPOSE_A");
}
if(mTransposeB) {
buildOptions.emplace(" -DTRANSPOSE_B");
}
// Match with Small tileM->OPWM tileN->OPWN tileK->CPWK localM->OPWM/OPTM localN->OPWN/OPTN
buildOptions.emplace(" -DOPWM=64 -DOPWN=128 -DCPWK=8 -DOPTM=4 -DOPTN=8");
unit.kernel = runtime->buildKernel("matmul_local_buf", "matmul_local_buf", buildOptions);
} else {
if(mTransposeA) {
mKernelName = mTransposeB ? "matmul_transA_transB_buf":"matmul_transA_buf";
} else {
mKernelName = mTransposeB ? "matmul_transB_buf":"matmul_buf";
}
unit.kernel = runtime->buildKernel("matmul_buf", mKernelName, buildOptions);
}
2024-04-19 11:58:21 +08:00
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
cl_int ret = CL_SUCCESS;
2024-06-03 20:09:34 +08:00
if(canUseLargeTile) {
int out_per_thread_m = tileM / localM;
int out_per_thread_n = tileN / localN;
2024-06-03 20:09:34 +08:00
mGlobalWorkSize = {static_cast<uint32_t>(M/out_per_thread_m), static_cast<uint32_t>(N/out_per_thread_n)};
mLocalWorkSize = {localM, localN};
float alpha = 1.0;
float beta = 0.0f;
2024-08-24 15:46:21 +08:00
int offset[4] = {0, 0, 0, 0};
int stride[4] = {M, N, N, N};
int idx = 0;
2024-06-03 20:09:34 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K));
ret |= unit.kernel->get().setArg(idx++, alpha);
ret |= unit.kernel->get().setArg(idx++, beta);
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
2024-06-03 20:09:34 +08:00
if (inputs.size() > 2) {
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
2024-06-03 20:09:34 +08:00
ret |= unit.kernel->get().setArg(idx++, offset);
2024-08-24 15:46:21 +08:00
ret |= unit.kernel->get().setArg(idx++, stride);
2024-06-03 20:09:34 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution use large tile opt");
} else if(canUseTile) {
int out_per_thread_m = tileM / localM;
int out_per_thread_n = tileN / localN;
mGlobalWorkSize = {static_cast<uint32_t>(M/out_per_thread_m), static_cast<uint32_t>(N/out_per_thread_n)};
mLocalWorkSize = {localM, localN};
int idx = 0;
2024-06-03 20:09:34 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K));
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
if(inputs.size() > 2) {
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
2024-06-03 20:09:34 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution use tile opt");
} else {
if(mTransposeA) {
mGlobalWorkSize = {static_cast<uint32_t>(N_4), static_cast<uint32_t>(M_4)};
int idx = 0;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
if(inputs.size() > 2) {
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K_4));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M_4));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N_4));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N));
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution mTransposeA");
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, unit.kernel).first;
}
else {
mGlobalWorkSize = {static_cast<uint32_t>(N_4), static_cast<uint32_t>(M)};
int idx = 0;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input0));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input1));
if(inputs.size() > 2) {
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(inputs[2]));
}
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K_4));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N_4));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N));
MNN_CHECK_CL_SUCCESS(ret, "setArg MatMulBufExecution");
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, unit.kernel).first;
}
}
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
return NO_ERROR;
}
class MatMulBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
2023-07-31 14:24:48 +08:00
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
auto param = op->main_as_MatMul();
return new MatMulBufExecution(inputs, op, backend, param->transposeA(), param->transposeB());
}
};
2023-12-27 17:26:44 +08:00
REGISTER_OPENCL_OP_CREATOR(MatMulBufCreator, OpType_MatMul, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */