MNN/source/backend/opencl/execution/buffer/DepthwiseConvBufExecution.cpp

341 lines
19 KiB
C++
Raw Normal View History

//
// DepthwiseConvBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/DepthwiseConvBufExecution.hpp"
2023-07-31 14:24:48 +08:00
#include "backend/opencl/execution/buffer/DepthwiseConvSubgroupBufExecution.hpp"
#include "core/ConvolutionCommon.hpp"
namespace MNN {
namespace OpenCL {
DepthwiseConvBufExecution::DepthwiseConvBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
2024-04-19 11:58:21 +08:00
: ConvBufCommonExecution(op->main_as_Convolution2D(), backend), CommonExecution(backend, op) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
2024-04-19 11:58:21 +08:00
mResource->mConv2dParams = op->main_as_Convolution2D();
mResource->mConv2dCommonParams = mResource->mConv2dParams->common();
mResource->mStrides = {mResource->mConv2dCommonParams->strideY(), mResource->mConv2dCommonParams->strideX()};
mResource->mDilations = {mResource->mConv2dCommonParams->dilateY(), mResource->mConv2dCommonParams->dilateX()};
2024-04-19 11:58:21 +08:00
int kernelWidth = mResource->mConv2dCommonParams->kernelX();
int kernelHeight = mResource->mConv2dCommonParams->kernelY();
int outputChannel = mResource->mConv2dCommonParams->outputCount();
std::vector<int> filterShape{1, outputChannel, kernelHeight, kernelWidth};
std::vector<int> filterImageShape{(int)kernelHeight * kernelWidth, (int)UP_DIV(outputChannel, 4)};
const float* filterDataPtr = nullptr;
int filterDataSize = 0;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
2024-04-19 11:58:21 +08:00
ConvolutionCommon::getConvParameters(&quanCommon, backend, mResource->mConv2dParams, &filterDataPtr, &filterDataSize);
2024-04-19 11:58:21 +08:00
mResource->mFilter.reset(Tensor::createDevice<float>({1, ROUND_UP(filterImageShape[1], 2)/*for kernel C8 read*/, 1, 4 * filterImageShape[0]}));
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>(filterShape));
2024-05-11 19:17:02 +08:00
size_t buffer_size = filterBuffer->elementSize() * sizeof(float);
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
cl_int error;
auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(ptrCL != nullptr && error == CL_SUCCESS){
2024-05-11 19:17:02 +08:00
::memcpy(ptrCL, filterDataPtr, filterBuffer->size());
}else{
MNN_ERROR("Map error ptrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
2024-04-19 11:58:21 +08:00
mOpenCLBackend->onAcquireBuffer(mResource->mFilter.get(), Backend::STATIC);
MNN::OpenCL::BufferConvertor bufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
2024-05-11 19:17:02 +08:00
bool needTrans = true;
2024-04-19 11:58:21 +08:00
bufferConvertor.convertToNC4HW4Buffer(filterBuffer.get(), MNN::OpenCL::DW_CONV2D_FILTER, mResource->mFilter.get(), needTrans);
2024-04-19 11:58:21 +08:00
if (mResource->mConv2dCommonParams->relu() == true) {
mResource->mBuildOptions.emplace("-DRELU");
} else if (mResource->mConv2dCommonParams->relu6() == true) {
mResource->mBuildOptions.emplace("-DRELU6");
}
}
DepthwiseConvBufExecution::~DepthwiseConvBufExecution() {
2024-04-19 11:58:21 +08:00
// Do nothing
}
2024-04-19 11:58:21 +08:00
DepthwiseConvBufExecution::DepthwiseConvBufExecution(std::shared_ptr<ConvBufResource> resource, const MNN::Op* op, Backend *backend)
: ConvBufCommonExecution(backend), CommonExecution(backend, op) {
mResource = resource;
const auto *conv2dParams = op->main_as_Convolution2D();
const auto *conv2dCommonParams = conv2dParams->common();
mResource->mConv2dParams = conv2dParams;
mResource->mConv2dCommonParams = conv2dCommonParams;
}
bool DepthwiseConvBufExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new DepthwiseConvBufExecution(mResource, op, bn);
return true;
}
ErrorCode DepthwiseConvBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
auto input = inputs[0];
auto output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2023-12-27 17:26:44 +08:00
auto runTime = mOpenCLBackend->getOpenCLRuntime();
2024-04-19 11:58:21 +08:00
if (mResource->mConv2dCommonParams->strideX() == 1 && mResource->mConv2dCommonParams->strideY() == 1 &&
mResource->mConv2dCommonParams->dilateX() == 1 && mResource->mConv2dCommonParams->dilateY() == 1) {
mStride_1 = true;
}
2024-04-19 11:58:21 +08:00
auto padding = ConvolutionCommon::convolutionPad(input, output, mResource->mConv2dCommonParams);
mPaddings[0] = padding.second;//padY
mPaddings[1] = padding.first;//padX
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannel = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
const int inputChannels = inputShape.at(3);
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
2024-04-19 11:58:21 +08:00
const int filterHeight = mResource->mConv2dParams->common()->kernelY();
const int filterWidth = mResource->mConv2dParams->common()->kernelX();
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {outputHeight, outputWidth};
2024-04-19 11:58:21 +08:00
int strideShape[2] = {mResource->mStrides[0], mResource->mStrides[1]};
int paddingShape[2] = {mPaddings[0], mPaddings[1]};
int kernelShape[2] = {filterHeight, filterWidth};
2024-04-19 11:58:21 +08:00
int dilationShape[2] = {mResource->mDilations[0], mResource->mDilations[1]};
if(mStride_1) {
// {"depthwise_conv2d_s1_c4h1w4", "depthwise_conv2d_s1_c8h1w4", "depthwise_conv2d_s1_c8h1w2"};
const int total_kernel = 3;
std::string kernelName[total_kernel] = {"depthwise_conv2d_s1_c4h1w4", "depthwise_conv2d_s1_c8h1w4", "depthwise_conv2d_s1_c8h1w2"};
int itemC[total_kernel] = {4, 8, 8};
int itemW[total_kernel] = {4, 4, 2};
int itemH[total_kernel] = {1, 1, 1};
int actual_kernel = total_kernel;
if(kernelShape[0]==3 && kernelShape[1]==3 && paddingShape[0]==1 && paddingShape[1]==1) {
//{"depthwise_conv2d_k3s1p1_c4h1w2", "depthwise_conv2d_k3s1p1_c4h2w2"}
actual_kernel = 2;
kernelName[0] = "depthwise_conv2d_k3s1p1_c4h1w2";
itemC[0] = 4;
itemW[0] = 2;
itemH[0] = 1;
kernelName[1] = "depthwise_conv2d_k3s1p1_c4h2w2";
itemC[1] = 4;
itemW[1] = 2;
itemH[1] = 2;
}
if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
actual_kernel = 1;
}
2024-04-19 11:58:21 +08:00
std::shared_ptr<KernelWrap> kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
2024-04-19 11:58:21 +08:00
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[knl_idx], mResource->mBuildOptions);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * UP_DIV(outputShape.at(1), itemH[knl_idx]))};
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(input));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(output));
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(inputChannels));
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(dilationShape), dilationShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(strideShape), strideShape);
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(outputWidth, itemW[knl_idx]));
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(outputChannel, 4));
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg DepthwiseConvBufExecution Stride_1 Kernel Select");
std::pair<std::vector<uint32_t>, int> retTune;
retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
//printf("depthwiseCovs1 %d, %d\n", knl_idx, retTune.second);
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
}
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
2024-04-19 11:58:21 +08:00
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[min_index], mResource->mBuildOptions);
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannels));
ret |= unit.kernel->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(dilationShape), dilationShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(strideShape), strideShape);
ret |= unit.kernel->get().setArg(idx++, UP_DIV(outputWidth, itemW[min_index]));
ret |= unit.kernel->get().setArg(idx++, UP_DIV(outputChannel, 4));
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg DepthwiseConvBufExecution Stride_1");
//printf("DepthwiseConvBufs1 %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outputChannel, outputWidth);
} else {
// {"depthwise_conv2d_c4h1w4", "depthwise_conv2d_c4h1w2", "depthwise_conv2d_c4h1w1"};
const int total_kernel = 3;
const std::string kernelName[total_kernel] = {"depthwise_conv2d_c4h1w1", "depthwise_conv2d_c4h1w4", "depthwise_conv2d_c4h1w2"};
int itemC[total_kernel] = {4, 4, 4};
int itemW[total_kernel] = {1, 4, 2};
int actual_kernel = total_kernel;
if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
actual_kernel = 1;
}
2024-04-19 11:58:21 +08:00
std::shared_ptr<KernelWrap> kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
2024-04-19 11:58:21 +08:00
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[knl_idx], mResource->mBuildOptions);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * outputShape.at(1))};
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(input));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(output));
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(inputChannels));
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(dilationShape), dilationShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(strideShape), strideShape);
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(outputWidth, itemW[knl_idx]));
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(outputChannel, 4));
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg DepthwiseConvBufExecution Kernel Select");
std::pair<std::vector<uint32_t>, int> retTune;
retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
//printf("depthwiseCov!! %d, %d\n", knl_idx, retTune.second);
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
}
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
2024-04-19 11:58:21 +08:00
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[min_index], mResource->mBuildOptions);
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannels));
ret |= unit.kernel->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(dilationShape), dilationShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(strideShape), strideShape);
ret |= unit.kernel->get().setArg(idx++, UP_DIV(outputWidth, itemW[min_index]));
ret |= unit.kernel->get().setArg(idx++, UP_DIV(outputChannel, 4));
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg DepthwiseConvBufExecution");
//printf("DepthwiseConvBuf!! %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outputChannel, outputWidth);
}
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
return NO_ERROR;
}
class DepthwiseConvolutionBufCreator : public OpenCLBackend::Creator {
public:
virtual ~DepthwiseConvolutionBufCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
MNN_ASSERT(inputs.size() <= 3);
2023-07-31 14:24:48 +08:00
if (inputs.size() > 1) {
2023-10-18 10:31:02 +08:00
//MNN_PRINT("multi input depthwise conv for opencl buffer not supoort!\n");
return nullptr;
}
MNN_ASSERT(inputs.size() == 1);
2023-07-31 14:24:48 +08:00
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
if (static_cast<OpenCLBackend *>(backend)->getOpenCLRuntime()->isSupportedIntelSubgroup() &&
outputs[0]->channel() >= 16) {
auto conv2D = op->main_as_Convolution2D();
auto pads = ConvolutionCommon::convolutionPadFull(inputs[0], outputs[0], conv2D->common());
TensorUtils::setTensorChannelPack(inputs[0], 16);
TensorUtils::setTensorPad(inputs[0], std::get<0>(pads), std::get<2>(pads), 0, 0);
return new DepthwiseConvSubgroupBufExecution(inputs, op, backend);
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
return new DepthwiseConvBufExecution(inputs, op, backend);
}
};
2023-12-27 17:26:44 +08:00
REGISTER_OPENCL_OP_CREATOR(DepthwiseConvolutionBufCreator, OpType_ConvolutionDepthwise, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */