| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  ShapeConvolution.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2019/01/10.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <math.h>
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "core/SizeComputer.hpp"
 | 
					
						
							|  |  |  | #include "core/TensorUtils.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | namespace MNN { | 
					
						
							|  |  |  | class ConvolutionSizeComputer : public SizeComputer { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor*>& outputs) const override { | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  |         MNN_ASSERT(inputs.size() >= 1); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         MNN_ASSERT(1 == outputs.size()); | 
					
						
							| 
									
										
										
										
											2020-03-22 20:16:29 +08:00
										 |  |  |         auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat; | 
					
						
							|  |  |  |         if (format != MNN_DATA_FORMAT_NC4HW4) { | 
					
						
							| 
									
										
										
										
											2020-01-15 13:33:47 +08:00
										 |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         auto layer        = op->main_as_Convolution2D()->common(); | 
					
						
							|  |  |  |         int kernel_width  = layer->dilateX() * (layer->kernelX() - 1) + 1; | 
					
						
							|  |  |  |         int kernel_height = layer->dilateY() * (layer->kernelY() - 1) + 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         int output_width  = 1; | 
					
						
							|  |  |  |         int output_height = 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto input = inputs[0]; | 
					
						
							|  |  |  |         if (input->buffer().dimensions < 4) { | 
					
						
							|  |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         if (input->width() <= 0 || input->height() <= 0) { | 
					
						
							|  |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2020-03-03 20:48:47 +08:00
										 |  |  |         if (layer->inputCount() > 0 && input->channel() != layer->inputCount() && OpType_Convolution == op->type()) { | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |             MNN_ERROR("Error for compute convolution shape, need channel = %d, input channel = %d\n", layer->inputCount(), input->channel()); | 
					
						
							|  |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if (layer->padMode() == PadMode_SAME) { | 
					
						
							|  |  |  |             // Tensorflow padding mode SAME
 | 
					
						
							|  |  |  |             output_width  = ceil((float)input->width() / (float)layer->strideX()); | 
					
						
							|  |  |  |             output_height = ceil((float)input->height() / (float)layer->strideY()); | 
					
						
							|  |  |  |         } else if (layer->padMode() == PadMode_VALID) { | 
					
						
							|  |  |  |             // Tensorflow padding mode VALID
 | 
					
						
							|  |  |  |             output_width  = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX()); | 
					
						
							|  |  |  |             output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY()); | 
					
						
							|  |  |  |         } else { | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |             // Pad_Caffe means User setted padding
 | 
					
						
							|  |  |  |             if (nullptr != layer->pads()) { | 
					
						
							|  |  |  |                 MNN_ASSERT(layer->pads()->size() >= 4); | 
					
						
							|  |  |  |                 int input_width  = input->width() + layer->pads()->data()[1] + layer->pads()->data()[3]; | 
					
						
							|  |  |  |                 int input_height = input->height() + layer->pads()->data()[0] + layer->pads()->data()[2]; | 
					
						
							|  |  |  |                 output_width     = (input_width - kernel_width) / layer->strideX() + 1; | 
					
						
							|  |  |  |                 output_height    = (input_height - kernel_height) / layer->strideY() + 1; | 
					
						
							|  |  |  |             } else { | 
					
						
							|  |  |  |                 int input_width  = input->width() + layer->padX() * 2; | 
					
						
							|  |  |  |                 int input_height = input->height() + layer->padY() * 2; | 
					
						
							|  |  |  |                 output_width     = (input_width - kernel_width) / layer->strideX() + 1; | 
					
						
							|  |  |  |                 output_height    = (input_height - kernel_height) / layer->strideY() + 1; | 
					
						
							|  |  |  |             } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto& outputBuffer         = outputs[0]->buffer(); | 
					
						
							|  |  |  |         outputBuffer.dimensions    = input->buffer().dimensions; | 
					
						
							|  |  |  |         outputBuffer.dim[0].extent = input->buffer().dim[0].extent; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         outputBuffer.dim[1].extent = layer->outputCount(); | 
					
						
							|  |  |  |         outputBuffer.dim[2].extent = output_height; | 
					
						
							|  |  |  |         outputBuffer.dim[3].extent = output_width; | 
					
						
							| 
									
										
										
										
											2019-07-11 13:56:52 +08:00
										 |  |  |         outputBuffer.type = input->getType(); | 
					
						
							| 
									
										
										
										
											2020-01-15 13:33:47 +08:00
										 |  |  |         //MNN_PRINT("%d, %d, %d, %d\n", outputs[0]->length(0), outputs[0]->length(1), outputs[0]->length(2), outputs[0]->length(3));
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-07-11 13:56:52 +08:00
										 |  |  |         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                  const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         auto layer = op->main_as_Convolution2D()->common(); | 
					
						
							|  |  |  |         auto kw    = layer->kernelX(); | 
					
						
							|  |  |  |         auto kh    = layer->kernelY(); | 
					
						
							|  |  |  |         auto group = layer->group(); | 
					
						
							|  |  |  |         auto ic    = inputs[0]->channel(); | 
					
						
							|  |  |  |         auto oc    = outputs[0]->channel(); | 
					
						
							|  |  |  |         auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto flops = (float)oSize * kw * kh * (ic * oc / group) / FLOPS_M; | 
					
						
							|  |  |  |         return flops; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | class Dilation2DSizeComputer : public ConvolutionSizeComputer { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         MNN_ASSERT(1 == inputs.size() && 1 == outputs.size()); | 
					
						
							|  |  |  |         return ConvolutionSizeComputer::onComputeSize(op, inputs, outputs); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                  const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         auto output = outputs[0]; | 
					
						
							|  |  |  |         auto layer = op->main_as_Convolution2D()->common(); | 
					
						
							|  |  |  |         auto oSize = output->batch() * output->height() * output->width() * output->channel(); | 
					
						
							|  |  |  |         auto flops = (float)oSize * layer->kernelY() * layer->kernelX() / FLOPS_M; | 
					
						
							|  |  |  |         return flops; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							| 
									
										
										
										
											2020-03-14 09:46:57 +08:00
										 |  |  | class Conv2DBackpropFilterSizeComputer : public SizeComputer { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         auto common = op->main_as_Convolution2D()->common(); | 
					
						
							|  |  |  |         auto kernel = outputs[0]; | 
					
						
							|  |  |  |         kernel->buffer().dimensions = 4; | 
					
						
							|  |  |  |         kernel->buffer().type = halide_type_of<float>(); | 
					
						
							|  |  |  |         TensorUtils::getDescribe(kernel)->dimensionFormat = MNN_DATA_FORMAT_NCHW; | 
					
						
							|  |  |  |         kernel->setLength(0, inputs[1]->channel()); | 
					
						
							|  |  |  |         kernel->setLength(1, inputs[0]->channel() / common->group()); | 
					
						
							|  |  |  |         kernel->setLength(2, common->kernelY()); | 
					
						
							|  |  |  |         kernel->setLength(3, common->kernelX()); | 
					
						
							|  |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | REGISTER_SHAPE(ConvolutionSizeComputer, OpType_Convolution); | 
					
						
							|  |  |  | REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvolutionDepthwise); | 
					
						
							| 
									
										
										
										
											2019-07-11 13:56:52 +08:00
										 |  |  | REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvInt8); | 
					
						
							|  |  |  | REGISTER_SHAPE(ConvolutionSizeComputer, OpType_DepthwiseConvInt8); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | REGISTER_SHAPE(Dilation2DSizeComputer, OpType_Dilation2D); | 
					
						
							| 
									
										
										
										
											2020-03-14 09:46:57 +08:00
										 |  |  | REGISTER_SHAPE(Conv2DBackpropFilterSizeComputer, OpType_Conv2DBackPropFilter); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | } // namespace MNN
 |