mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			135 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  ShapeConvolution.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2019/01/10.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <math.h>
 | |
| #include "core/SizeComputer.hpp"
 | |
| #include "core/TensorUtils.hpp"
 | |
| namespace MNN {
 | |
| class ConvolutionSizeComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(inputs.size() >= 1);
 | |
|         MNN_ASSERT(1 == outputs.size());
 | |
|         auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         if (format != MNN_DATA_FORMAT_NC4HW4) {
 | |
|             return false;
 | |
|         }
 | |
|         auto layer        = op->main_as_Convolution2D()->common();
 | |
|         int kernel_width  = layer->dilateX() * (layer->kernelX() - 1) + 1;
 | |
|         int kernel_height = layer->dilateY() * (layer->kernelY() - 1) + 1;
 | |
| 
 | |
|         int output_width  = 1;
 | |
|         int output_height = 1;
 | |
| 
 | |
|         auto input = inputs[0];
 | |
|         if (input->buffer().dimensions < 4) {
 | |
|             return false;
 | |
|         }
 | |
|         if (input->width() <= 0 || input->height() <= 0) {
 | |
|             return false;
 | |
|         }
 | |
|         if (layer->inputCount() > 0 && input->channel() != layer->inputCount() && OpType_Convolution == op->type()) {
 | |
|             MNN_ERROR("Error for compute convolution shape, need channel = %d, input channel = %d\n", layer->inputCount(), input->channel());
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (layer->padMode() == PadMode_SAME) {
 | |
|             // Tensorflow padding mode SAME
 | |
|             output_width  = ceil((float)input->width() / (float)layer->strideX());
 | |
|             output_height = ceil((float)input->height() / (float)layer->strideY());
 | |
|         } else if (layer->padMode() == PadMode_VALID) {
 | |
|             // Tensorflow padding mode VALID
 | |
|             output_width  = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
 | |
|             output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
 | |
|         } else {
 | |
|             // Pad_Caffe means User setted padding
 | |
|             if (nullptr != layer->pads()) {
 | |
|                 MNN_ASSERT(layer->pads()->size() >= 4);
 | |
|                 int input_width  = input->width() + layer->pads()->data()[1] + layer->pads()->data()[3];
 | |
|                 int input_height = input->height() + layer->pads()->data()[0] + layer->pads()->data()[2];
 | |
|                 output_width     = (input_width - kernel_width) / layer->strideX() + 1;
 | |
|                 output_height    = (input_height - kernel_height) / layer->strideY() + 1;
 | |
|             } else {
 | |
|                 int input_width  = input->width() + layer->padX() * 2;
 | |
|                 int input_height = input->height() + layer->padY() * 2;
 | |
|                 output_width     = (input_width - kernel_width) / layer->strideX() + 1;
 | |
|                 output_height    = (input_height - kernel_height) / layer->strideY() + 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         auto& outputBuffer         = outputs[0]->buffer();
 | |
|         outputBuffer.dimensions    = input->buffer().dimensions;
 | |
|         outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | |
| 
 | |
|         outputBuffer.dim[1].extent = layer->outputCount();
 | |
|         outputBuffer.dim[2].extent = output_height;
 | |
|         outputBuffer.dim[3].extent = output_width;
 | |
|         outputBuffer.type = input->getType();
 | |
|         //MNN_PRINT("%d, %d, %d, %d\n", outputs[0]->length(0), outputs[0]->length(1), outputs[0]->length(2), outputs[0]->length(3));
 | |
| 
 | |
|         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) const override {
 | |
|         auto layer = op->main_as_Convolution2D()->common();
 | |
|         auto kw    = layer->kernelX();
 | |
|         auto kh    = layer->kernelY();
 | |
|         auto group = layer->group();
 | |
|         auto ic    = inputs[0]->channel();
 | |
|         auto oc    = outputs[0]->channel();
 | |
|         auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
 | |
| 
 | |
|         auto flops = (float)oSize * kw * kh * (ic * oc / group) / FLOPS_M;
 | |
|         return flops;
 | |
|     }
 | |
| };
 | |
| 
 | |
| class Dilation2DSizeComputer : public ConvolutionSizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         MNN_ASSERT(1 == inputs.size() && 1 == outputs.size());
 | |
|         return ConvolutionSizeComputer::onComputeSize(op, inputs, outputs);
 | |
|     }
 | |
|     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                  const std::vector<Tensor*>& outputs) const override {
 | |
|         auto output = outputs[0];
 | |
|         auto layer = op->main_as_Convolution2D()->common();
 | |
|         auto oSize = output->batch() * output->height() * output->width() * output->channel();
 | |
|         auto flops = (float)oSize * layer->kernelY() * layer->kernelX() / FLOPS_M;
 | |
|         return flops;
 | |
|     }
 | |
| };
 | |
| class Conv2DBackpropFilterSizeComputer : public SizeComputer {
 | |
| public:
 | |
|     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | |
|                                const std::vector<Tensor*>& outputs) const override {
 | |
|         auto common = op->main_as_Convolution2D()->common();
 | |
|         auto kernel = outputs[0];
 | |
|         kernel->buffer().dimensions = 4;
 | |
|         kernel->buffer().type = halide_type_of<float>();
 | |
|         TensorUtils::getDescribe(kernel)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | |
|         kernel->setLength(0, inputs[1]->channel());
 | |
|         kernel->setLength(1, inputs[0]->channel() / common->group());
 | |
|         kernel->setLength(2, common->kernelY());
 | |
|         kernel->setLength(3, common->kernelX());
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_Convolution);
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvolutionDepthwise);
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvInt8);
 | |
| REGISTER_SHAPE(ConvolutionSizeComputer, OpType_DepthwiseConvInt8);
 | |
| REGISTER_SHAPE(Dilation2DSizeComputer, OpType_Dilation2D);
 | |
| REGISTER_SHAPE(Conv2DBackpropFilterSizeComputer, OpType_Conv2DBackPropFilter);
 | |
| } // namespace MNN
 |