2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUQuantizedAvgPool.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/08/14.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
2022-07-19 13:52:07 +08:00
|
|
|
#ifdef MNN_SUPPORT_DEPRECATED_OP
|
|
|
|
#include "backend/cpu/CPUQuantizedAvgPool.hpp"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUQuantizationUtils.hpp"
|
|
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "backend/cpu/compute/OptimizedComputer.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
CPUQuantizedAvgPool::CPUQuantizedAvgPool(Backend *backend, const Op *CPUQuantizedAvgPoolOp) : Execution(backend) {
|
|
|
|
auto CPUQuantizedAvgPool = CPUQuantizedAvgPoolOp->main_as_QuantizedAvgPool();
|
|
|
|
mIstflite = (CPUQuantizedAvgPool->modelFormat() == ModeFormat_TFLITE);
|
|
|
|
mKernelWidth = CPUQuantizedAvgPool->kernelX();
|
|
|
|
mKernelHeight = CPUQuantizedAvgPool->kernelY();
|
|
|
|
mPadWidth = CPUQuantizedAvgPool->padX();
|
|
|
|
mPadHeight = CPUQuantizedAvgPool->padY();
|
|
|
|
mStrideWidth = CPUQuantizedAvgPool->strideX();
|
|
|
|
mStrideHeight = CPUQuantizedAvgPool->strideY();
|
|
|
|
mPadMode = CPUQuantizedAvgPool->padType();
|
|
|
|
mOutputActivationMin = CPUQuantizedAvgPool->outputActivationMin();
|
|
|
|
mOutputActivationMax = CPUQuantizedAvgPool->outputActivationMax();
|
|
|
|
}
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-05-05 20:27:57 +08:00
|
|
|
ErrorCode CPUQuantizedAvgPool::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
MNN_ASSERT(input->buffer().dimensions == 4);
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-05-05 20:27:57 +08:00
|
|
|
int32_t inBatch = input->buffer().dim[0].extent;
|
|
|
|
int32_t inRows = input->buffer().dim[2].extent;
|
|
|
|
int32_t inCols = input->buffer().dim[3].extent;
|
|
|
|
int32_t inChannel = input->buffer().dim[1].extent;
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
const int32_t windowRows = mKernelHeight;
|
|
|
|
const int32_t windowCols = mKernelWidth;
|
|
|
|
const int32_t rowStride = mStrideHeight;
|
|
|
|
const int32_t colStride = mStrideWidth;
|
2019-05-05 20:27:57 +08:00
|
|
|
int32_t outHeight = output->buffer().dim[2].extent;
|
|
|
|
int32_t outWidth = output->buffer().dim[3].extent;
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
switch (mPadMode) {
|
|
|
|
case PoolPadType_CAFFE:
|
|
|
|
MNN_ASSERT(false);
|
|
|
|
break;
|
|
|
|
case PoolPadType_VALID:
|
2019-05-05 20:27:57 +08:00
|
|
|
mPadHeight = mPadWidth = 0;
|
2019-04-17 10:49:11 +08:00
|
|
|
break;
|
|
|
|
case PoolPadType_SAME:
|
|
|
|
auto widthNeeded = (outWidth - 1) * colStride + windowCols - inCols;
|
|
|
|
auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
|
|
|
|
mPadWidth = widthNeeded > 0 ? widthNeeded / 2 : 0;
|
|
|
|
mPadHeight = heightNeeded > 0 ? heightNeeded / 2 : 0;
|
|
|
|
break;
|
|
|
|
}
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-05-05 20:27:57 +08:00
|
|
|
mInputDims = {inBatch, inRows, inCols, inChannel};
|
|
|
|
mOutputDims = {output->batch(), output->height(), output->width(), output->channel()};
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-05-05 20:27:57 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-05-05 20:27:57 +08:00
|
|
|
ErrorCode CPUQuantizedAvgPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
2019-12-27 22:16:57 +08:00
|
|
|
|
|
|
|
|
2019-05-05 20:27:57 +08:00
|
|
|
uint8_t *inputPtr = inputs[0]->host<uint8_t>();
|
|
|
|
uint8_t *outputPtr = outputs[0]->host<uint8_t>();
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-05-05 20:27:57 +08:00
|
|
|
Optimized::AveragePool(inputPtr, mInputDims, mStrideWidth, mStrideHeight, mPadWidth, mPadHeight, mKernelWidth,
|
|
|
|
mKernelHeight, mOutputActivationMin, mOutputActivationMax, outputPtr, mOutputDims);
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUQuantizedAvgPoolCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const {
|
|
|
|
return new CPUQuantizedAvgPool(backend, op);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace MNN
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
#endif
|
2022-07-19 13:52:07 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
REGISTER_CPU_OP_CREATOR_OLD(CPUQuantizedAvgPoolCreator, OpType_QuantizedAvgPool);
|
|
|
|
};
|