MNN/source/backend/cpu/CPUQuantizedAvgPool.cpp

99 lines
3.6 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUQuantizedAvgPool.cpp
// MNN
//
// Created by MNN on 2018/08/14.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUBackend.hpp"
#ifdef MNN_SUPPORT_DEPRECATED_OP
#include "backend/cpu/CPUQuantizedAvgPool.hpp"
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUQuantizationUtils.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "core/Macro.h"
#include "backend/cpu/compute/OptimizedComputer.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
CPUQuantizedAvgPool::CPUQuantizedAvgPool(Backend *backend, const Op *CPUQuantizedAvgPoolOp) : Execution(backend) {
auto CPUQuantizedAvgPool = CPUQuantizedAvgPoolOp->main_as_QuantizedAvgPool();
mIstflite = (CPUQuantizedAvgPool->modelFormat() == ModeFormat_TFLITE);
mKernelWidth = CPUQuantizedAvgPool->kernelX();
mKernelHeight = CPUQuantizedAvgPool->kernelY();
mPadWidth = CPUQuantizedAvgPool->padX();
mPadHeight = CPUQuantizedAvgPool->padY();
mStrideWidth = CPUQuantizedAvgPool->strideX();
mStrideHeight = CPUQuantizedAvgPool->strideY();
mPadMode = CPUQuantizedAvgPool->padType();
mOutputActivationMin = CPUQuantizedAvgPool->outputActivationMin();
mOutputActivationMax = CPUQuantizedAvgPool->outputActivationMax();
}
2019-12-27 22:16:57 +08:00
ErrorCode CPUQuantizedAvgPool::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2019-12-27 22:16:57 +08:00
2019-04-17 10:49:11 +08:00
auto input = inputs[0];
auto output = outputs[0];
2019-12-27 22:16:57 +08:00
2019-04-17 10:49:11 +08:00
MNN_ASSERT(input->buffer().dimensions == 4);
2019-12-27 22:16:57 +08:00
int32_t inBatch = input->buffer().dim[0].extent;
int32_t inRows = input->buffer().dim[2].extent;
int32_t inCols = input->buffer().dim[3].extent;
int32_t inChannel = input->buffer().dim[1].extent;
2019-12-27 22:16:57 +08:00
2019-04-17 10:49:11 +08:00
const int32_t windowRows = mKernelHeight;
const int32_t windowCols = mKernelWidth;
const int32_t rowStride = mStrideHeight;
const int32_t colStride = mStrideWidth;
int32_t outHeight = output->buffer().dim[2].extent;
int32_t outWidth = output->buffer().dim[3].extent;
2019-12-27 22:16:57 +08:00
2019-04-17 10:49:11 +08:00
switch (mPadMode) {
case PoolPadType_CAFFE:
MNN_ASSERT(false);
break;
case PoolPadType_VALID:
mPadHeight = mPadWidth = 0;
2019-04-17 10:49:11 +08:00
break;
case PoolPadType_SAME:
auto widthNeeded = (outWidth - 1) * colStride + windowCols - inCols;
auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
mPadWidth = widthNeeded > 0 ? widthNeeded / 2 : 0;
mPadHeight = heightNeeded > 0 ? heightNeeded / 2 : 0;
break;
}
2019-12-27 22:16:57 +08:00
mInputDims = {inBatch, inRows, inCols, inChannel};
mOutputDims = {output->batch(), output->height(), output->width(), output->channel()};
2019-12-27 22:16:57 +08:00
return NO_ERROR;
}
2019-04-17 10:49:11 +08:00
2019-12-27 22:16:57 +08:00
ErrorCode CPUQuantizedAvgPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2019-12-27 22:16:57 +08:00
uint8_t *inputPtr = inputs[0]->host<uint8_t>();
uint8_t *outputPtr = outputs[0]->host<uint8_t>();
2019-12-27 22:16:57 +08:00
Optimized::AveragePool(inputPtr, mInputDims, mStrideWidth, mStrideHeight, mPadWidth, mPadHeight, mKernelWidth,
mKernelHeight, mOutputActivationMin, mOutputActivationMax, outputPtr, mOutputDims);
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
class CPUQuantizedAvgPoolCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
return new CPUQuantizedAvgPool(backend, op);
}
};
} // namespace MNN
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
#endif
namespace MNN {
REGISTER_CPU_OP_CREATOR_OLD(CPUQuantizedAvgPoolCreator, OpType_QuantizedAvgPool);
};