MNN/source/shape/ShapeStridedSlice.cpp

166 lines
6.1 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeStridedSlice.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <algorithm>
#include <array>
2020-11-05 16:41:56 +08:00
#include "shape/SizeComputer.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class StridedSliceComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
MNN_ASSERT(4 == inputs.size());
MNN_ASSERT(1 == outputs.size());
2019-12-27 22:16:57 +08:00
2019-04-17 10:49:11 +08:00
Tensor *input = inputs[0];
const int inputDimension = input->buffer().dimensions;
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
if (inputDimension <= 0) {
return false;
}
2019-04-17 10:49:11 +08:00
// input haven't realized
auto output = outputs[0];
auto parameter = op->main_as_StridedSliceParam();
Tensor *begin = inputs[1];
Tensor *end = inputs[2];
Tensor *strided = inputs[3];
MNN_ASSERT(begin->buffer().dimensions == end->buffer().dimensions &&
begin->buffer().dimensions == strided->buffer().dimensions);
2020-11-05 16:41:56 +08:00
int32_t inputShape[MNN_MAX_TENSOR_DIM];
2019-04-17 10:49:11 +08:00
for (int i = 0; i < input->buffer().dimensions; i++) {
inputShape[i] = input->buffer().dim[i].extent;
}
int stridedSliceDimension = begin->buffer().dim[0].extent;
2020-11-05 16:41:56 +08:00
int32_t beginShape[MNN_MAX_TENSOR_DIM];
int32_t endShape[MNN_MAX_TENSOR_DIM];
int32_t stridedShape[MNN_MAX_TENSOR_DIM];
int32_t outputShape[MNN_MAX_TENSOR_DIM];
int32_t outputShapeShrinked[MNN_MAX_TENSOR_DIM];
int outputShapeSize = 0;
int outputShapeShrinkSize = 0;
2019-04-17 10:49:11 +08:00
2020-11-05 16:41:56 +08:00
int32_t beginMask[MNN_MAX_TENSOR_DIM];
2019-04-17 10:49:11 +08:00
for (int i = 0; i < stridedSliceDimension; i++) {
beginMask[i] = parameter->beginMask() & (1 << i);
}
2020-11-05 16:41:56 +08:00
int32_t endMask[MNN_MAX_TENSOR_DIM];
2019-04-17 10:49:11 +08:00
for (int i = 0; i < stridedSliceDimension; i++) {
endMask[i] = parameter->endMask() & (1 << i);
}
2020-11-05 16:41:56 +08:00
int32_t shrinkAxisMask[MNN_MAX_TENSOR_DIM];
2019-04-17 10:49:11 +08:00
for (int i = 0; i < stridedSliceDimension; i++) {
shrinkAxisMask[i] = parameter->shrinkAxisMask() & (1 << i);
}
2020-11-05 16:41:56 +08:00
#ifdef MNN_SUPPORT_ELLIPSE
2019-04-17 10:49:11 +08:00
int ellipsisMaskNonZeroBitPosition = 0;
for (int i = 0; i < stridedSliceDimension; i++) {
int temp = parameter->ellipsisMask() & (1 << i);
if (temp != 0) {
ellipsisMaskNonZeroBitPosition = i; // only one non-zero bit is allowed in ellipsisMask
break;
}
}
std::vector<int32_t> newAxisMask(stridedSliceDimension);
for (int i = 0; i < stridedSliceDimension; i++) {
newAxisMask[i] = parameter->newAxisMask() & (1 << i);
}
2020-11-05 16:41:56 +08:00
#endif
2019-04-17 10:49:11 +08:00
if (parameter->ellipsisMask() != 0 || parameter->newAxisMask() != 0) {
2020-11-05 16:41:56 +08:00
MNN_ERROR("Strided_slice don't support ellipsisMask and newAxisMask now\n");
return false;
2019-04-17 10:49:11 +08:00
}
2020-11-05 16:41:56 +08:00
auto beginAndEndShapeLimit = [](int shape, int dimSize, bool exclusive) -> int {
int maxShape = dimSize - 1, minShape = -dimSize;
if (exclusive) {
++maxShape;
--minShape;
}
shape = (shape > maxShape ? maxShape : shape);
shape = (shape < minShape ? minShape : shape);
if (shape < 0) {
shape += dimSize;
}
return shape;
};
2019-04-17 10:49:11 +08:00
for (int i = 0; i < stridedSliceDimension; i++) {
if (beginMask[i] > 0) {
beginShape[i] = 0;
} else {
2020-11-05 16:41:56 +08:00
beginShape[i] = std::min(inputShape[i], begin->host<int32_t>()[i]);
}
if (beginShape[i] < 0) {
beginShape[i] += input->buffer().dim[i].extent;
2019-04-17 10:49:11 +08:00
}
if (endMask[i] > 0) {
endShape[i] = inputShape[i];
} else {
endShape[i] = beginAndEndShapeLimit(end->host<int32_t>()[i], inputShape[i], true);
2019-04-17 10:49:11 +08:00
}
stridedShape[i] = shrinkAxisMask[i] > 0 ? 1 : strided->host<int32_t>()[i];
if (endShape[i] < beginShape[i]) {
int t = beginShape[i];
beginShape[i] = endShape[i];
endShape[i] = t;
MNN_ASSERT(stridedShape[i] != 0);
if (stridedShape[i] < 0) {
stridedShape[i] = -stridedShape[i];
} else {
// MNN_ASSERT(false); // TODO: should be the wrong case, but there is one in linfeng's faster
// rcnn face model
beginShape[i] = endShape[i]; // TODO: temp solution
}
}
if (shrinkAxisMask[i] == 0) {
int size = (endShape[i] - beginShape[i] - 1) / stridedShape[i] + 1;
2020-11-05 16:41:56 +08:00
outputShape[outputShapeSize] = size;
outputShapeSize++;
outputShapeShrinked[outputShapeShrinkSize] = size;
outputShapeShrinkSize++;
2019-04-17 10:49:11 +08:00
} else {
2020-11-05 16:41:56 +08:00
outputShape[outputShapeSize] = std::min(1, inputShape[i]);
outputShapeSize++;
2019-04-17 10:49:11 +08:00
}
}
2020-11-05 16:41:56 +08:00
int outputDimensionsWithoutRemain = outputShapeSize;
2019-04-17 10:49:11 +08:00
int dimensionRemained = input->buffer().dimensions - stridedSliceDimension;
for (int i = 0; i < dimensionRemained; i++) {
2020-11-05 16:41:56 +08:00
outputShapeShrinked[outputShapeShrinkSize] = input->buffer().dim[outputDimensionsWithoutRemain + i].extent;
outputShapeShrinkSize++;
2019-04-17 10:49:11 +08:00
}
2020-11-05 16:41:56 +08:00
output->buffer().dimensions = outputShapeShrinkSize;
2019-04-17 10:49:11 +08:00
output->buffer().type = input->buffer().type;
output->buffer().dim[0].extent = 1;
2020-11-05 16:41:56 +08:00
for (int i = 0; i < outputShapeShrinkSize; i++) {
2019-04-17 10:49:11 +08:00
output->buffer().dim[i].extent = outputShapeShrinked[i];
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE_INPUTS(StridedSliceComputer, OpType_StridedSlice, (std::vector<int>{1,2,3}));
2019-04-17 10:49:11 +08:00
} // namespace MNN