2023-07-18 09:36:26 +08:00
|
|
|
//
|
2023-05-18 19:11:50 +08:00
|
|
|
// LoopBufExecution.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
2023-07-18 09:36:26 +08:00
|
|
|
// Created by MNN on 2023/04/23.
|
2023-05-18 19:11:50 +08:00
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
|
|
|
|
|
|
#include "backend/opencl/execution/buffer/LoopBufExecution.hpp"
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
namespace OpenCL {
|
|
|
|
|
2024-04-19 11:58:21 +08:00
|
|
|
static void _TileOrPackTensor(Tensor *input, Tensor *output, std::shared_ptr<KernelWrap>& kernelW, cl::NDRange &globalWorkSize,
|
2023-05-18 19:11:50 +08:00
|
|
|
cl::NDRange &localWorkSize, const int Width, const int Height, const int Channel,
|
2023-12-27 17:26:44 +08:00
|
|
|
const int Batch, OpenCLBackend *bn, const std::string &KernelName, std::set<std::string> buildOptions) {
|
2023-09-20 20:16:25 +08:00
|
|
|
if (TensorUtils::getDescribe(output)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC || TensorUtils::getDescribe(input)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC){
|
|
|
|
buildOptions.emplace("-DMNN_NHWC");
|
|
|
|
}
|
2024-04-19 11:58:21 +08:00
|
|
|
if(input->getType().code == halide_type_int){
|
|
|
|
kernelW = bn->getOpenCLRuntime()->buildKernel("loop_buf", KernelName, buildOptions, input, input);
|
|
|
|
}else if (output->getType().code == halide_type_int){
|
|
|
|
kernelW = bn->getOpenCLRuntime()->buildKernel("loop_buf", KernelName, buildOptions, output, output);
|
|
|
|
}else {
|
|
|
|
kernelW = bn->getOpenCLRuntime()->buildKernel("loop_buf", KernelName, buildOptions, input, output);
|
|
|
|
}
|
|
|
|
auto kernel = kernelW->get();
|
|
|
|
|
|
|
|
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(bn->getOpenCLRuntime()->getMaxWorkGroupSize(kernelW));
|
2023-05-18 19:11:50 +08:00
|
|
|
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(Width * Height), (uint32_t)(UP_DIV(Channel, 4)), (uint32_t)(Batch)};
|
|
|
|
|
|
|
|
uint32_t index = 0;
|
2023-07-31 14:24:48 +08:00
|
|
|
cl_int ret = CL_SUCCESS;
|
|
|
|
ret |= kernel.setArg(index++, mGlobalWorkSize[0]);
|
|
|
|
ret |= kernel.setArg(index++, mGlobalWorkSize[1]);
|
|
|
|
ret |= kernel.setArg(index++, mGlobalWorkSize[2]);
|
|
|
|
ret |= kernel.setArg(index++, openCLBuffer(input));
|
|
|
|
ret |= kernel.setArg(index++, openCLBuffer(output));
|
|
|
|
ret |= kernel.setArg(index++, Width);
|
|
|
|
ret |= kernel.setArg(index++, Height);
|
|
|
|
ret |= kernel.setArg(index++, Channel);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopBuf _TileOrPackTensor");
|
2023-05-18 19:11:50 +08:00
|
|
|
|
2024-04-19 11:58:21 +08:00
|
|
|
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, bn->getOpenCLRuntime(), KernelName, kernelW).first;
|
2023-05-18 19:11:50 +08:00
|
|
|
|
|
|
|
globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
|
|
|
|
localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
|
2024-04-19 11:58:21 +08:00
|
|
|
bn->recordKernel3d(kernelW, mGlobalWorkSize, mLocalWorkSize);
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void _setTensorStack(std::vector<Tensor *> &result, const std::vector<Tensor *> &inputs,
|
|
|
|
const std::vector<Tensor *> &outputs, const LoopParam *loop) {
|
|
|
|
if (loop->inputIndexes() != nullptr) {
|
|
|
|
for (int i = 0; i < loop->inputIndexes()->size(); ++i) {
|
|
|
|
result[loop->inputIndexes()->data()[i]] = inputs[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int i = 0; i < loop->outputIndexes()->size(); ++i) {
|
|
|
|
result[loop->outputIndexes()->data()[i]] = outputs[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
LoopGatherBufExecution::LoopGatherBufExecution(const LoopParam *loop, const MNN::Op *op, Backend *bn)
|
|
|
|
: CommonExecution(bn, op) {
|
|
|
|
mLoop = loop;
|
|
|
|
mTensors.resize(mLoop->tensorNumber());
|
|
|
|
auto cmd = loop->commands()->GetAs<RegionCommand>(0);
|
|
|
|
}
|
2024-04-19 11:58:21 +08:00
|
|
|
ErrorCode LoopGatherBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
2023-05-18 19:11:50 +08:00
|
|
|
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
|
|
|
|
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
|
|
|
|
auto runTime = mOpenCLBackend->getOpenCLRuntime();
|
|
|
|
_setTensorStack(mTensors, inputs, outputs, mLoop);
|
|
|
|
mUnits.clear();
|
|
|
|
mOffsetTensors.clear();
|
|
|
|
int x = cmd->size()->data()[0];
|
|
|
|
int y = cmd->size()->data()[1];
|
|
|
|
int z = cmd->size()->data()[2];
|
|
|
|
int n = mLoop->loopNumber();
|
2024-04-19 11:58:21 +08:00
|
|
|
int inputSize = mTensors[cmd->indexes()->data()[1]]->elementSize();
|
2023-05-18 19:11:50 +08:00
|
|
|
|
|
|
|
auto srcStride = cmd->view()->GetAs<View>(1)->stride()->data();
|
|
|
|
auto dstStride = cmd->view()->GetAs<View>(0)->stride()->data();
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
|
|
mStride_src[i] = srcStride[i];
|
|
|
|
mStride_dst[i] = dstStride[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
mStride_src[3] = cmd->view()->GetAs<View>(1)->offset();
|
|
|
|
mStride_dst[3] = cmd->view()->GetAs<View>(0)->offset();
|
|
|
|
::memcpy(mStep, cmd->steps()->data(), cmd->steps()->size() * sizeof(int));
|
|
|
|
::memcpy(mIter, cmd->iterIndexes()->data(), cmd->iterIndexes()->size() * sizeof(int));
|
|
|
|
|
|
|
|
// gather
|
|
|
|
{
|
2024-04-19 11:58:21 +08:00
|
|
|
auto input = mTensors[cmd->indexes()->data()[1]];
|
|
|
|
auto output = mTensors[cmd->indexes()->data()[0]];
|
|
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
|
|
std::vector<int> outputShape = tensorShapeFormat(output);
|
|
|
|
int inputShapeVec[4] = {inputShape[2], inputShape[1], inputShape[3], inputShape[0]};
|
|
|
|
int outputShapeVec[4] = {outputShape[2], outputShape[1], outputShape[3], inputShape[0]};
|
|
|
|
int offset_index = 0;
|
|
|
|
|
|
|
|
Unit unit;
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
if (TensorUtils::getDescribe(output)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC){
|
|
|
|
buildOptions.emplace("-DGATHER_OUTPUT_NHWC");
|
|
|
|
}
|
|
|
|
if (TensorUtils::getDescribe(input)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC){
|
|
|
|
buildOptions.emplace("-DGATHER_INPUT_NHWC");
|
|
|
|
}
|
|
|
|
if (mIter[0] >= 0) {
|
|
|
|
auto tensor = mTensors[cmd->iterIndexes()->data()[0]];
|
|
|
|
std::vector<int> shape = tensorShapeFormat(tensor);
|
|
|
|
if(shape[3] == 1){
|
|
|
|
buildOptions.emplace("-DOFFSET_DST_CHANNEL_STRIDE4");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (mIter[1] >= 0) {
|
|
|
|
auto tensor = mTensors[cmd->iterIndexes()->data()[1]];
|
|
|
|
std::vector<int> shape = tensorShapeFormat(tensor);
|
|
|
|
if(shape[3] == 1){
|
|
|
|
buildOptions.emplace("-DOFFSET_SRC_CHANNEL_STRIDE4");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
unit.kernel = runTime->buildKernel("gather_buf", "batch_gather_buf", buildOptions, input, output);
|
|
|
|
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
|
|
|
|
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(x * y), (uint32_t)(z), (uint32_t)(n)};
|
|
|
|
|
|
|
|
uint32_t index = 0;
|
|
|
|
cl_int ret = CL_SUCCESS;
|
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[0]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[1]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[2]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(output));
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(input));
|
|
|
|
for (int i = 0; i < cmd->iterIndexes()->size(); ++i) {
|
|
|
|
if (mIter[i] >= 0) {
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(mTensors[cmd->iterIndexes()->data()[i]]));
|
|
|
|
} else {
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(input));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ret |= unit.kernel->get().setArg(index++, x);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(mStride_src), mStride_src);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(mStride_dst), mStride_dst);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(mStep), mStep);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(mIter), mIter);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(outputShapeVec), outputShapeVec);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(inputShapeVec), inputShapeVec);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, inputSize);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopGatherBufExecution");
|
|
|
|
|
|
|
|
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, "batch_gather_buf", unit.kernel).first;
|
|
|
|
|
|
|
|
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
|
|
|
|
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
|
|
|
|
mUnits.emplace_back(unit);
|
|
|
|
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
LoopBatchMatMulBufExecution::LoopBatchMatMulBufExecution(const LoopParam *loop, const MNN::Op *op, Backend *bn)
|
|
|
|
: CommonExecution(bn, op) {
|
|
|
|
mLoop = loop;
|
|
|
|
mTensors.resize(mLoop->tensorNumber());
|
|
|
|
auto cmd = loop->commands()->GetAs<RegionCommand>(0);
|
2024-04-19 11:58:21 +08:00
|
|
|
}
|
|
|
|
ErrorCode LoopBatchMatMulBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
|
2023-05-18 19:11:50 +08:00
|
|
|
mHasBias = cmd->indexes()->size() > 3;
|
|
|
|
mTransposeA = cmd->op()->main_as_MatMul()->transposeA();
|
|
|
|
mTransposeB = cmd->op()->main_as_MatMul()->transposeB();
|
|
|
|
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
|
|
|
|
auto runTime = mOpenCLBackend->getOpenCLRuntime();
|
|
|
|
_setTensorStack(mTensors, inputs, outputs, mLoop);
|
|
|
|
|
|
|
|
mOffset[0] = cmd->view()->GetAs<View>(0)->offset();
|
|
|
|
mOffset[1] = cmd->view()->GetAs<View>(1)->offset();
|
|
|
|
mOffset[2] = cmd->view()->GetAs<View>(2)->offset();
|
|
|
|
mUnits.clear();
|
|
|
|
mOffsetTensors.clear();
|
|
|
|
mTmpTensors.resize(3);
|
|
|
|
if (mHasBias) {
|
|
|
|
mTmpTensors.resize(4);
|
|
|
|
mOffset[3] = cmd->view()->GetAs<View>(3)->offset();
|
|
|
|
}
|
|
|
|
|
|
|
|
::memcpy(mStep, cmd->steps()->data(), cmd->steps()->size() * sizeof(int));
|
|
|
|
::memcpy(mIter, cmd->iterIndexes()->data(), cmd->iterIndexes()->size() * sizeof(int));
|
|
|
|
int e = cmd->size()->data()[0];
|
|
|
|
int l = cmd->size()->data()[1];
|
|
|
|
int h = cmd->size()->data()[2];
|
|
|
|
int n = mLoop->loopNumber();
|
|
|
|
|
|
|
|
// tile input
|
|
|
|
for (int i = 1; i < cmd->indexes()->size(); ++i) {
|
|
|
|
auto input = mTensors[cmd->indexes()->data()[i]];
|
|
|
|
std::vector<int> Shape = tensorShapeFormat(input);
|
|
|
|
const int Channel = Shape.at(3);
|
|
|
|
const int Width = Shape.at(2);
|
|
|
|
const int Height = Shape.at(1);
|
|
|
|
const int Batch = Shape.at(0);
|
2024-05-11 19:17:02 +08:00
|
|
|
mTmpTensors[i] = std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{Batch, Channel, Height, Width}, Tensor::CAFFE));
|
|
|
|
|
2023-05-18 19:11:50 +08:00
|
|
|
mOpenCLBackend->onAcquireBuffer(mTmpTensors[i].get(), Backend::DYNAMIC);
|
|
|
|
|
|
|
|
Unit unit;
|
2023-12-27 17:26:44 +08:00
|
|
|
_TileOrPackTensor(input, mTmpTensors[i].get(), unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, "tile_buf", mBuildOptions);
|
2023-05-18 19:11:50 +08:00
|
|
|
mUnits.emplace_back(unit);
|
|
|
|
}
|
|
|
|
|
|
|
|
for(int i = 0; i < cmd->iterIndexes()->size(); ++i){
|
|
|
|
if (mIter[i] >= 0) {
|
|
|
|
auto input = mTensors[cmd->iterIndexes()->data()[i]];
|
|
|
|
std::vector<int> Shape = tensorShapeFormat(input);
|
|
|
|
const int Channel = Shape.at(3);
|
|
|
|
const int Width = Shape.at(2);
|
|
|
|
const int Height = Shape.at(1);
|
|
|
|
const int Batch = Shape.at(0);
|
2023-09-20 20:16:25 +08:00
|
|
|
mOffsetTensors.emplace_back(std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{Batch, Channel, Height, Width}, Tensor::CAFFE)));
|
2023-05-18 19:11:50 +08:00
|
|
|
mOpenCLBackend->onAcquireBuffer(mOffsetTensors.back().get(), Backend::DYNAMIC);
|
|
|
|
|
|
|
|
Unit unit;
|
2023-12-27 17:26:44 +08:00
|
|
|
_TileOrPackTensor(input, mOffsetTensors.back().get(), unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, "tile_buf", mBuildOptions);
|
2023-05-18 19:11:50 +08:00
|
|
|
mUnits.emplace_back(unit);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// matmul
|
|
|
|
{
|
2023-09-20 20:16:25 +08:00
|
|
|
mTmpTensors[0] = std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{1, n, e, h}, Tensor::CAFFE));
|
2023-05-18 19:11:50 +08:00
|
|
|
mOpenCLBackend->onAcquireBuffer(mTmpTensors[0].get(), Backend::DYNAMIC);
|
|
|
|
int offset_index = 0;
|
|
|
|
|
|
|
|
Unit unit;
|
2023-09-20 20:16:25 +08:00
|
|
|
std::string KernelName = "batch_matmul";
|
2024-04-19 11:58:21 +08:00
|
|
|
std::set<std::string> buildOptions = mBuildOptions;
|
2023-05-18 19:11:50 +08:00
|
|
|
if (mHasBias) {
|
2024-04-19 11:58:21 +08:00
|
|
|
buildOptions.emplace("-DBIAS");
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
|
|
|
if (mTransposeA) {
|
2024-04-19 11:58:21 +08:00
|
|
|
buildOptions.emplace("-DTRANSPOSE_A");
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
|
|
|
if (mTransposeB) {
|
2024-04-19 11:58:21 +08:00
|
|
|
buildOptions.emplace("-DTRANSPOSE_B");
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
2024-04-19 11:58:21 +08:00
|
|
|
buildOptions.emplace("-DH_LEAVES=" + std::to_string(h % 4));
|
|
|
|
unit.kernel = runTime->buildKernel("loop", KernelName, buildOptions, mTensors[cmd->indexes()->data()[1]], mTensors[cmd->indexes()->data()[0]]);
|
2023-05-18 19:11:50 +08:00
|
|
|
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
|
2023-12-04 11:12:20 +08:00
|
|
|
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(UP_DIV(h, 4)), (uint32_t)(UP_DIV(e, 4)),(uint32_t)(n)};
|
2023-05-18 19:11:50 +08:00
|
|
|
|
|
|
|
uint32_t index = 0;
|
2023-07-31 14:24:48 +08:00
|
|
|
cl_int ret = CL_SUCCESS;
|
2024-04-19 11:58:21 +08:00
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[0]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[1]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[2]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(mTmpTensors[0].get()));
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(mTmpTensors[1].get()));
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(mTmpTensors[2].get()));
|
2023-05-18 19:11:50 +08:00
|
|
|
if (mHasBias) {
|
2024-04-19 11:58:21 +08:00
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(mTmpTensors[3].get()));
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
|
|
|
for (int i = 0; i < cmd->iterIndexes()->size(); ++i) {
|
|
|
|
if (mIter[i] >= 0) {
|
2024-04-19 11:58:21 +08:00
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(mOffsetTensors[offset_index++].get()));
|
2023-05-18 19:11:50 +08:00
|
|
|
} else {
|
2024-04-19 11:58:21 +08:00
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(mTensors[cmd->indexes()->data()[1]]));
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
|
|
|
}
|
2024-04-19 11:58:21 +08:00
|
|
|
ret |= unit.kernel->get().setArg(index++, e);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, l);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, h);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(mOffset), mOffset);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(mIter), mIter);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(mStep), mStep);
|
2023-07-31 14:24:48 +08:00
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopBatchMatMulBufExecution");
|
2023-05-18 19:11:50 +08:00
|
|
|
|
|
|
|
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel).first;
|
|
|
|
|
|
|
|
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
|
|
|
|
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
|
|
|
|
mUnits.emplace_back(unit);
|
2024-04-19 11:58:21 +08:00
|
|
|
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
//pack output
|
|
|
|
{
|
|
|
|
auto output = mTensors[cmd->indexes()->data()[0]];
|
|
|
|
std::vector<int> Shape = tensorShapeFormat(output);
|
|
|
|
const int Channel = Shape.at(3);
|
|
|
|
const int Width = Shape.at(2);
|
|
|
|
const int Height = Shape.at(1);
|
|
|
|
const int Batch = Shape.at(0);
|
|
|
|
Unit unit;
|
2023-12-27 17:26:44 +08:00
|
|
|
_TileOrPackTensor(mTmpTensors[0].get(), output, unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, mOpenCLBackend, "pack_buf", mBuildOptions);
|
2023-05-18 19:11:50 +08:00
|
|
|
mUnits.emplace_back(unit);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < cmd->indexes()->size(); ++i) {
|
|
|
|
mOpenCLBackend->onReleaseBuffer(mTmpTensors[i].get(), Backend::DYNAMIC);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < mOffsetTensors.size(); ++i) {
|
|
|
|
mOpenCLBackend->onReleaseBuffer(mOffsetTensors[i].get(), Backend::DYNAMIC);
|
|
|
|
}
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
2023-09-20 20:16:25 +08:00
|
|
|
LoopBinaryBufExecution::LoopBinaryBufExecution(const LoopParam *loop, const std::string &compute, const MNN::Op *op, Backend *bn)
|
|
|
|
: CommonExecution(bn, op) {
|
|
|
|
mLoop = loop;
|
|
|
|
mTensors.resize(mLoop->tensorNumber());
|
|
|
|
mBuildOptions.emplace("-DLOOP_BINARY_OPERATOR=" + compute);
|
|
|
|
}
|
|
|
|
|
2024-04-19 11:58:21 +08:00
|
|
|
ErrorCode LoopBinaryBufExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
2023-09-20 20:16:25 +08:00
|
|
|
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
|
|
|
|
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
|
|
|
|
auto runTime = mOpenCLBackend->getOpenCLRuntime();
|
|
|
|
_setTensorStack(mTensors, inputs, outputs, mLoop);
|
|
|
|
mUnits.clear();
|
|
|
|
|
|
|
|
Unit unit;
|
|
|
|
auto input0 = mTensors[cmd->indexes()->data()[1]];
|
|
|
|
std::vector<int> Input0Shape = tensorShapeFormat(input0);
|
|
|
|
int Input0Size[4] = {Input0Shape.at(2), Input0Shape.at(1),Input0Shape.at(3),Input0Shape.at(0)};
|
|
|
|
|
|
|
|
auto input1 = mTensors[cmd->indexes()->data()[2]];
|
|
|
|
std::vector<int> Input1Shape = tensorShapeFormat(input1);
|
|
|
|
int Input1Size[4] = {Input1Shape.at(2), Input1Shape.at(1),Input1Shape.at(3),Input1Shape.at(0)};
|
|
|
|
|
|
|
|
auto output = mTensors[cmd->indexes()->data()[0]];
|
|
|
|
std::vector<int> Shape = tensorShapeFormat(output);
|
2024-02-29 16:21:40 +08:00
|
|
|
|
|
|
|
bool broadcastInput0 = false;
|
|
|
|
bool broadcastInput1 = false;
|
|
|
|
int input0Shape[8] = {1, 1, 1, 1, 1, 1, 1, 1};
|
|
|
|
int input1Shape[8] = {1, 1, 1, 1, 1, 1, 1, 1};
|
|
|
|
int outputShape[8] = {1, 1, 1, 1, 1, 1, 1, 1};
|
|
|
|
|
|
|
|
int offset0 = output->dimensions() - input0->dimensions();
|
|
|
|
int offset1 = output->dimensions() - input1->dimensions();
|
|
|
|
for (int i = 0; i < input0->dimensions(); ++i) {
|
|
|
|
input0Shape[i + offset0] = input0->length(i);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < input1->dimensions(); ++i) {
|
|
|
|
input1Shape[i + offset1] = input1->length(i);
|
|
|
|
}
|
|
|
|
for(int i =0;i<output->dimensions();++i){
|
|
|
|
outputShape[i] = output->length(i);
|
|
|
|
}
|
|
|
|
if (TensorUtils::getDescribe(input0)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC)
|
|
|
|
{
|
|
|
|
int iN = input0Shape[0];
|
|
|
|
int iH = input0Shape[1];
|
|
|
|
int iW = input0Shape[2];
|
|
|
|
int iC = input0Shape[3];
|
|
|
|
|
|
|
|
if(input0->dimensions() > 4)
|
|
|
|
{
|
|
|
|
for(int i = 4; i < input0->dimensions(); i++)
|
|
|
|
{
|
|
|
|
iC *= input0Shape[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
input0Shape[0] = iN;
|
|
|
|
input0Shape[1] = iC;
|
|
|
|
input0Shape[2] = iH;
|
|
|
|
input0Shape[3] = iW;
|
|
|
|
input0Shape[4] = 1;
|
|
|
|
}
|
|
|
|
if (TensorUtils::getDescribe(input1)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC)
|
|
|
|
{
|
|
|
|
int iN = input1Shape[0];
|
|
|
|
int iH = input1Shape[1];
|
|
|
|
int iW = input1Shape[2];
|
|
|
|
int iC = input1Shape[3];
|
|
|
|
|
|
|
|
if(input1->dimensions() > 4)
|
|
|
|
{
|
|
|
|
for(int i = 4; i < input1->dimensions(); i++)
|
|
|
|
{
|
|
|
|
iC *= input1Shape[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
input1Shape[0] = iN;
|
|
|
|
input1Shape[1] = iC;
|
|
|
|
input1Shape[2] = iH;
|
|
|
|
input1Shape[3] = iW;
|
|
|
|
input1Shape[4] = 1;
|
|
|
|
}
|
|
|
|
if (TensorUtils::getDescribe(output)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC)
|
|
|
|
{
|
|
|
|
int iN = outputShape[0];
|
|
|
|
int iH = outputShape[1];
|
|
|
|
int iW = outputShape[2];
|
|
|
|
int iC = outputShape[3];
|
|
|
|
|
|
|
|
if(input1->dimensions() > 4)
|
|
|
|
{
|
|
|
|
for(int i = 4; i < input1->dimensions(); i++)
|
|
|
|
{
|
|
|
|
iC *= outputShape[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
input1Shape[0] = iN;
|
|
|
|
outputShape[1] = iC;
|
|
|
|
outputShape[2] = iH;
|
|
|
|
outputShape[3] = iW;
|
|
|
|
outputShape[4] = 1;
|
|
|
|
}
|
|
|
|
|
2023-09-20 20:16:25 +08:00
|
|
|
const int Channel = Shape.at(3);
|
|
|
|
const int Width = Shape.at(2);
|
|
|
|
const int Height = Shape.at(1);
|
|
|
|
const int Batch = Shape.at(0);
|
|
|
|
const int ChannelBlock = UP_DIV(Channel, 4);
|
|
|
|
auto BuildOptions = mBuildOptions;
|
|
|
|
std::string KernelName = "broadcast_binary_buf";
|
2024-04-19 11:58:21 +08:00
|
|
|
unit.kernel = runTime->buildKernel("loop_buf", KernelName, BuildOptions, input0, output);
|
2023-09-20 20:16:25 +08:00
|
|
|
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
|
|
|
|
|
|
|
|
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(Width), (uint32_t)(Height), (uint32_t)(Batch * ChannelBlock)};
|
|
|
|
|
|
|
|
uint32_t index = 0;
|
|
|
|
cl_int ret = CL_SUCCESS;
|
2024-04-19 11:58:21 +08:00
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[0]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[1]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, mGlobalWorkSize[2]);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(output));
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(input0));
|
|
|
|
ret |= unit.kernel->get().setArg(index++, openCLBuffer(input1));
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(input0Shape), input0Shape);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(Input0Size), Input0Size);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(input1Shape), input1Shape);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(Input1Size), Input1Size);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, sizeof(outputShape), outputShape);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, Width);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, Height);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, Channel);
|
|
|
|
ret |= unit.kernel->get().setArg(index++, ChannelBlock);
|
2023-09-20 20:16:25 +08:00
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopBinaryBufExecution");
|
|
|
|
|
|
|
|
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel).first;
|
|
|
|
|
|
|
|
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
|
|
|
|
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
|
|
|
|
mUnits.emplace_back(unit);
|
2023-12-27 17:26:44 +08:00
|
|
|
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
|
2023-09-20 20:16:25 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
2023-05-18 19:11:50 +08:00
|
|
|
class LoopBufCreator : public OpenCLBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const override {
|
2023-07-31 14:24:48 +08:00
|
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
|
|
TensorUtils::setTensorSupportPack(inputs[i], false);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
|
|
TensorUtils::setTensorSupportPack(outputs[i], false);
|
|
|
|
}
|
2023-05-18 19:11:50 +08:00
|
|
|
auto loop = op->main_as_LoopParam();
|
|
|
|
if (nullptr == loop || loop->commands() == nullptr) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
if (nullptr != loop->initCommand()) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
// Make Tensor Stack
|
|
|
|
if (1 == loop->commands()->size()) {
|
|
|
|
auto cmd = loop->commands()->GetAs<RegionCommand>(0);
|
|
|
|
auto subop = cmd->op();
|
|
|
|
if (OpType_UnaryOp == subop->type() && nullptr == subop->main() && cmd->fuse() < 0) {
|
|
|
|
return new LoopGatherBufExecution(loop, op, backend);
|
|
|
|
}
|
|
|
|
if (OpType_MatMul == subop->type() && loop->parallel()) {
|
|
|
|
return new LoopBatchMatMulBufExecution(loop, op, backend);
|
|
|
|
}
|
2023-09-20 20:16:25 +08:00
|
|
|
if (OpType_BinaryOp == subop->type() && loop->parallel()) {
|
|
|
|
switch (subop->main_as_BinaryOp()->opType()) {
|
|
|
|
case BinaryOpOperation_MUL:
|
|
|
|
return new LoopBinaryBufExecution(loop, "in0*in1", op, backend);
|
|
|
|
case BinaryOpOperation_ADD:
|
|
|
|
return new LoopBinaryBufExecution(loop, "in0+in1", op, backend);
|
|
|
|
case BinaryOpOperation_SUB:
|
|
|
|
return new LoopBinaryBufExecution(loop, "in0-in1", op, backend);
|
|
|
|
case BinaryOpOperation_REALDIV:
|
2024-04-19 11:58:21 +08:00
|
|
|
return new LoopBinaryBufExecution(loop, "sign(in1)*in0/(fabs(in1)>(float4)((float)0.0000001)?fabs(in1):(float4)((float)0.0000001))", op, backend);
|
2023-09-20 20:16:25 +08:00
|
|
|
case BinaryOpOperation_MINIMUM:
|
|
|
|
return new LoopBinaryBufExecution(loop, "in0>in1?in1:in0", op, backend);
|
|
|
|
case BinaryOpOperation_MAXIMUM:
|
|
|
|
return new LoopBinaryBufExecution(loop, "in0>in1?in0:in1", op, backend);
|
|
|
|
case BinaryOpOperation_GREATER:
|
|
|
|
return new LoopBinaryBufExecution(loop, "convert_float4(-isgreater(in0,in1))", op, backend);
|
|
|
|
case BinaryOpOperation_LESS:
|
|
|
|
return new LoopBinaryBufExecution(loop, "convert_float4(-isless(in0,in1))", op, backend);
|
|
|
|
case BinaryOpOperation_LESS_EQUAL:
|
|
|
|
return new LoopBinaryBufExecution(loop, "convert_float4(-islessequal(in0,in1))", op, backend);
|
|
|
|
case BinaryOpOperation_GREATER_EQUAL:
|
|
|
|
return new LoopBinaryBufExecution(loop, "convert_float4(-isgreaterequal(in0,in1))", op, backend);
|
|
|
|
case BinaryOpOperation_EQUAL:
|
|
|
|
return new LoopBinaryBufExecution(loop, "convert_float4(-isequal(in0,in1))", op, backend);
|
|
|
|
case BinaryOpOperation_FLOORDIV:
|
2024-04-19 11:58:21 +08:00
|
|
|
return new LoopBinaryBufExecution(loop, "floor(sign(in1)*in0/(fabs(in1)>(float4)((float)0.0000001)?fabs(in1):(float4)((float)0.0000001)))", op, backend);
|
2023-09-20 20:16:25 +08:00
|
|
|
case BinaryOpOperation_FLOORMOD:
|
2024-04-19 11:58:21 +08:00
|
|
|
return new LoopBinaryBufExecution(loop, "in0-floor(sign(in1)*in0/(fabs(in1)>(float4)((float)0.0000001)?fabs(in1):(float4)((float)0.0000001)))*in1", op, backend);
|
2023-09-20 20:16:25 +08:00
|
|
|
case BinaryOpOperation_POW:
|
|
|
|
return new LoopBinaryBufExecution(loop, "pow(in0,in1)", op, backend);
|
|
|
|
case BinaryOpOperation_SquaredDifference:
|
|
|
|
return new LoopBinaryBufExecution(loop, "(in0-in1)*(in0-in1)", op, backend);
|
|
|
|
case BinaryOpOperation_ATAN2:
|
2024-04-19 11:58:21 +08:00
|
|
|
return new LoopBinaryBufExecution(loop, "(in1==(float4)0?(sign(in0)*(float4)(PI/2)):(atan(in0/in1)+(in1>(float4)0?(float4)0:sign(in0)*(float4)PI)))", op, backend);
|
2023-09-20 20:16:25 +08:00
|
|
|
case BinaryOpOperation_NOTEQUAL:
|
|
|
|
return new LoopBinaryBufExecution(loop, "convert_float4(-isnotequal(in0,in1))", op, backend);
|
|
|
|
case BinaryOpOperation_MOD:
|
2024-04-19 11:58:21 +08:00
|
|
|
return new LoopBinaryBufExecution(loop, "in0-floor(sign(in1)*in0/(fabs(in1)>(float4)((float)0.0000001)?fabs(in1):(float4)((float)0.0000001)))*in1", op, backend);
|
2023-09-20 20:16:25 +08:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
2023-05-18 19:11:50 +08:00
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-27 17:26:44 +08:00
|
|
|
REGISTER_OPENCL_OP_CREATOR(LoopBufCreator, OpType_While, BUFFER);
|
2023-05-18 19:11:50 +08:00
|
|
|
|
|
|
|
} // namespace OpenCL
|
|
|
|
} // namespace MNN
|
|
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|