MNN/source/backend/opencl/execution/image/FuseExecution.cpp

83 lines
3.2 KiB
C++
Raw Normal View History

2023-02-15 10:30:27 +08:00
//
// FuseExecution.cpp
// MNN
//
// Created by MNN on 2022/11/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/FuseExecution.hpp"
#include "core/Macro.h"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
namespace MNN {
namespace OpenCL {
FuseExecution::FuseExecution(const std::vector<Tensor *> &inputs, Backend *backend, const Op* op)
2024-04-19 11:58:21 +08:00
: CommonExecution(backend, op) {
mUnits.resize(1);
2023-02-15 10:30:27 +08:00
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
2024-04-19 11:58:21 +08:00
std::set<std::string> buildOptions;
std::string kernelName;
auto extra = op->main_as_Extra();
auto source = reinterpret_cast<const char*>(extra->info()->data());
auto name = extra->type()->c_str();
mKernelName = extra->type()->str();
2025-04-28 11:38:44 +08:00
mUnits[0].kernel = runtime->buildKernelFromSource(source, name, buildOptions, mOpenCLBackend->getPrecision());
2024-04-19 11:58:21 +08:00
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mUnits[0].kernel));
2023-02-15 10:30:27 +08:00
}
2024-04-19 11:58:21 +08:00
ErrorCode FuseExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2023-02-15 10:30:27 +08:00
Tensor *input = inputs[0];
Tensor *output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2024-04-19 11:58:21 +08:00
auto &unit = mUnits[0];
2023-02-15 10:30:27 +08:00
const int outputBatch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannels = outputShape.at(3);
const int channelBlocks = UP_DIV(outputChannels, 4);
const int remainChannels = channelBlocks * 4 - outputChannels;
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks),
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight * outputBatch)
};
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
2023-02-15 10:30:27 +08:00
for (auto input : inputs) {
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLImage(input));
2023-02-15 10:30:27 +08:00
}
for (auto output : outputs) {
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLImage(output));
2023-02-15 10:30:27 +08:00
}
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
2023-07-31 14:24:48 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg FuseExecution");
2025-04-28 11:38:44 +08:00
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), mKernelName, unit.kernel, mOpenCLBackend->getCLTuneLevel()).first;
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
2023-02-15 10:30:27 +08:00
return NO_ERROR;
}
class FuseCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new FuseExecution(inputs, backend, op);
}
};
2023-12-27 17:26:44 +08:00
REGISTER_OPENCL_OP_CREATOR(FuseCreator, OpType_Extra, IMAGE);
2023-02-15 10:30:27 +08:00
} // namespace OpenCL
} // namespace MNN