MNN/source/shape/ShapeTensorArray.cpp

446 lines
20 KiB
C++
Raw Normal View History

2021-01-06 16:29:37 +08:00
//
// ShapeTensorArray.cpp
// MNN
//
// Created by MNN on 2020/12/21.
// Copyright © 2018, Alibaba Group Holding Limited
//
2022-01-04 10:50:40 +08:00
#include <numeric>
2021-01-06 16:29:37 +08:00
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include "math.h"
namespace MNN {
static void copyTensorArrayAttribute(const Tensor* src, Tensor* dst) {
auto srcDes = TensorUtils::getDescribe(src);
auto dstDes = TensorUtils::getDescribe(dst);
dstDes->dimensionFormat = srcDes->dimensionFormat;
dstDes->tensorArrayAttr.reset(new TensorArrayAttr);
dstDes->tensorArrayAttr->isDynamicSize = srcDes->tensorArrayAttr->isDynamicSize;
dstDes->tensorArrayAttr->isIdenticalShape = srcDes->tensorArrayAttr->isIdenticalShape;
dstDes->tensorArrayAttr->arraySize = srcDes->tensorArrayAttr->arraySize;
dstDes->tensorArrayAttr->elemShape = srcDes->tensorArrayAttr->elemShape;
}
static void updateTensorArrayDims(Tensor* t) {
auto des = TensorUtils::getDescribe(t);
// shape : [Sum(elemShape)]
t->buffer().dimensions = 1;
2022-01-04 10:50:40 +08:00
int totalSize = 0, arraySize = des->tensorArrayAttr->arraySize;
2021-01-06 16:29:37 +08:00
for (auto elem : des->tensorArrayAttr->elemShape) {
int elemSize = 1;
for (auto dim : elem) {
elemSize *= dim;
}
totalSize += elemSize;
}
2022-01-04 10:50:40 +08:00
if (des->tensorArrayAttr->elemShape.size() == 1 && arraySize > 1) {
totalSize *= arraySize;
} else if (totalSize == 0) {
totalSize = 1; // bypass MNNV3 Dynamic Graph Executor zeroShape check
}
t->setLength(0, totalSize);
2021-01-06 16:29:37 +08:00
t->setLength(1, 1);
t->setLength(2, 1);
t->setLength(3, 1);
}
// ============================ TensorArray ============================
class TensorArrayComputer : public SizeComputer {
// inputs : size
// outputs: handle, flow_out
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size() && 2 == outputs.size());
auto param = op->main_as_TensorArray();
2021-02-07 10:45:07 +08:00
for (int i = 0; i < 2; i++) {
auto& output = outputs[i];
auto des = TensorUtils::getDescribe(output);
// 1. set TensorArray attrs
des->tensorArrayAttr.reset(new TensorArrayAttr);
des->tensorArrayAttr->isDynamicSize = param->dynamic_size();
des->tensorArrayAttr->isIdenticalShape = param->identical_element_shapes();
if (param->element_shape() && param->element_shape()->size() > 0) {
std::vector<int> elemShape(param->element_shape()->size());
for (int i = 0; i < param->element_shape()->size(); i++) {
elemShape[i] = param->element_shape()->Get(i);
2021-10-14 14:59:14 +08:00
if (elemShape[i] < 0) {
elemShape[i] = 0;
}
2021-02-07 10:45:07 +08:00
}
des->tensorArrayAttr->elemShape.emplace_back(std::move(elemShape));
2021-01-06 16:29:37 +08:00
}
2021-02-07 10:45:07 +08:00
des->tensorArrayAttr->arraySize = inputs[0]->host<uint32_t>()[0];
// 2. set dtype, dimension format and dims
output->setType(param->T());
2022-01-04 10:50:40 +08:00
TensorUtils::getDescribe(output)->dimensionFormat = op->defaultDimentionFormat();
2021-02-07 10:45:07 +08:00
updateTensorArrayDims(output);
MNN_ASSERT(des->tensorArrayAttr != nullptr);
2021-01-06 16:29:37 +08:00
}
return true;
}
};
REGISTER_SHAPE_INPUTS(TensorArrayComputer, OpType_TensorArray, {0});
// ============================ TensorArraySize ============================
class TensorArraySizeComputer : public SizeComputer {
// inputs : handle, flow_in
// outputs: tensor
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size() && 1 == outputs.size());
MNN_ASSERT(TensorUtils::getDescribe(inputs[1])->tensorArrayAttr != nullptr);
outputs[0]->setType(DataType_DT_INT32);
outputs[0]->buffer().dimensions = 1;
outputs[0]->setLength(0, 1);
2022-01-04 10:50:40 +08:00
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[1])->dimensionFormat;
2021-01-06 16:29:37 +08:00
return true;
}
};
REGISTER_SHAPE(TensorArraySizeComputer, OpType_TensorArraySize);
// ============================ TensorArrayRead ============================
class TensorArrayReadComputer : public SizeComputer {
// inputs : handle, index, flow_in
// outputs: tensor
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(3 == inputs.size() && 1 == outputs.size());
auto des = TensorUtils::getDescribe(inputs[2]);
if (des->tensorArrayAttr == nullptr) {
return false;
}
std::vector<int> readElemShape;
2021-04-08 15:34:23 +08:00
int readIndex = inputs[1]->host<uint32_t>()[0];
if (!des->tensorArrayAttr->isIdenticalShape && des->tensorArrayAttr->elemShape.size() > readIndex) {
readElemShape = des->tensorArrayAttr->elemShape[readIndex];
} else if (des->tensorArrayAttr->elemShape.size() >= 1) {
readElemShape = des->tensorArrayAttr->elemShape[0];
2021-01-06 16:29:37 +08:00
} else {
2021-04-08 15:34:23 +08:00
MNN_ASSERT(false);
2021-01-06 16:29:37 +08:00
}
2024-11-18 14:37:45 +08:00
outputs[0]->buffer().type = inputs[2]->buffer().type;
2021-01-06 16:29:37 +08:00
outputs[0]->buffer().dimensions = readElemShape.size();
for (int i = 0; i < readElemShape.size(); i++) {
outputs[0]->setLength(i, readElemShape[i]);
}
2022-01-04 10:50:40 +08:00
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[2])->dimensionFormat;
2021-01-06 16:29:37 +08:00
return true;
}
};
REGISTER_SHAPE_INPUTS(TensorArrayReadComputer, OpType_TensorArrayRead, {1});
// ============================ TensorArrayWrite ============================
class TensorArrayWriteComputer : public SizeComputer {
// inputs : handle, index, value, flow_in
// outputs: flow_out
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(4 == inputs.size() && 1 == outputs.size());
auto inDes = TensorUtils::getDescribe(inputs[3]);
auto outDes = TensorUtils::getDescribe(outputs[0]);
if (inDes->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
2022-01-04 10:50:40 +08:00
if (TensorUtils::getDescribe(inputs[2])->dimensionFormat != inDes->dimensionFormat) {
MNN_ASSERT(false);
return false;
}
2021-01-06 16:29:37 +08:00
copyTensorArrayAttribute(inputs[3], outputs[0]);
2024-11-18 14:37:45 +08:00
outputs[0]->buffer().type = inputs[2]->buffer().type;
2021-01-06 16:29:37 +08:00
int writeIndex = inputs[1]->host<uint32_t>()[0];
// update arraySize
if (!inDes->tensorArrayAttr->isDynamicSize) {
MNN_ASSERT(writeIndex < inDes->tensorArrayAttr->arraySize);
} else if (writeIndex >= inDes->tensorArrayAttr->arraySize) {
outDes->tensorArrayAttr->arraySize = writeIndex + 1;
}
// update elemShape
auto writeShape = inputs[2]->shape();
if (outDes->tensorArrayAttr->isIdenticalShape) {
if (outDes->tensorArrayAttr->elemShape.empty()) {
outDes->tensorArrayAttr->elemShape.push_back(writeShape);
2021-02-07 10:45:07 +08:00
} else {
outDes->tensorArrayAttr->elemShape[0] = writeShape;
2021-01-06 16:29:37 +08:00
}
} else {
for (int i = outDes->tensorArrayAttr->elemShape.size(); i <= writeIndex; i++) {
outDes->tensorArrayAttr->elemShape.push_back(writeShape);
}
outDes->tensorArrayAttr->elemShape[writeIndex] = writeShape;
}
updateTensorArrayDims(outputs[0]);
MNN_ASSERT(outDes->tensorArrayAttr != nullptr);
return true;
}
};
REGISTER_SHAPE_INPUTS(TensorArrayWriteComputer, OpType_TensorArrayWrite, {1});
// ============================ TensorArrayGather ============================
class TensorArrayGatherComputer : public SizeComputer {
// inputs : handle, indices, flow_in
// outputs: tensor
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(3 == inputs.size() && 1 == outputs.size());
auto inDes = TensorUtils::getDescribe(inputs[2]);
auto outDes = TensorUtils::getDescribe(outputs[0]);
if (inDes->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
auto param = op->main_as_TensorArray();
outputs[0]->setType(param->T());
outDes->dimensionFormat = inDes->dimensionFormat;
outputs[0]->buffer().dimensions = inputs[2]->buffer().dimensions;
outputs[0]->setLength(0, inputs[1]->length(0));
// using param shape
if (param->element_shape() && param->element_shape()->size() > 0) {
outputs[0]->buffer().dimensions = param->element_shape()->size() + 1;
2021-02-07 10:45:07 +08:00
MNN_ASSERT(param->element_shape()->size() == inDes->tensorArrayAttr->elemShape[0].size());
2021-01-06 16:29:37 +08:00
for (int i = 0; i < param->element_shape()->size(); i++) {
2021-02-07 10:45:07 +08:00
int dimValue = param->element_shape()->Get(i);
if (dimValue < 0) {
dimValue = inDes->tensorArrayAttr->elemShape[0][i];
}
outputs[0]->setLength(1 + i, dimValue);
2021-01-06 16:29:37 +08:00
}
} else {
if (inDes->tensorArrayAttr->elemShape.size() == 1) {
for (int i = 0; i < inDes->tensorArrayAttr->elemShape[0].size(); i++) {
outputs[0]->setLength(1 + i, inDes->tensorArrayAttr->elemShape[0][i]);
}
} else {
MNN_ASSERT(false);
}
}
return true;
}
};
REGISTER_SHAPE_INPUTS(TensorArrayGatherComputer, OpType_TensorArrayGather, {1});
// ============================ TensorArrayScatter ============================
class TensorArrayScatterComputer : public SizeComputer {
// inputs : handle, indices, value, flow_in
// outputs: flow_out
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(4 == inputs.size() && 1 == outputs.size());
auto inDes = TensorUtils::getDescribe(inputs[3]);
auto outDes = TensorUtils::getDescribe(outputs[0]);
if (inDes->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
2022-01-04 10:50:40 +08:00
if (TensorUtils::getDescribe(inputs[2])->dimensionFormat != inDes->dimensionFormat) {
MNN_ASSERT(false);
return false;
}
2021-01-06 16:29:37 +08:00
copyTensorArrayAttribute(inputs[3], outputs[0]);
for (int i = 0; i < inputs[1]->length(0); i++) {
int writeIndex = inputs[1]->host<uint32_t>()[i];
if (!inDes->tensorArrayAttr->isDynamicSize) {
MNN_ASSERT(writeIndex < inDes->tensorArrayAttr->arraySize);
} else if (writeIndex >= inDes->tensorArrayAttr->arraySize) {
outDes->tensorArrayAttr->arraySize = writeIndex + 1;
}
std::vector<int> writeElemShape(inputs[2]->shape());
writeElemShape.erase(writeElemShape.begin());
if (outDes->tensorArrayAttr->elemShape.empty()) {
outDes->tensorArrayAttr->elemShape.emplace_back(std::move(writeElemShape));
} else {
2021-02-07 10:45:07 +08:00
outDes->tensorArrayAttr->elemShape[0] = writeElemShape;
2021-01-06 16:29:37 +08:00
}
}
2024-11-18 14:37:45 +08:00
outputs[0]->buffer().type = inputs[3]->buffer().type;
2021-01-06 16:29:37 +08:00
updateTensorArrayDims(outputs[0]);
MNN_ASSERT(outDes->tensorArrayAttr != nullptr);
return true;
}
};
REGISTER_SHAPE_INPUTS(TensorArrayScatterComputer, OpType_TensorArrayScatter, {1});
// ============================ TensorArraySplit ============================
class TensorArraySplitComputer : public SizeComputer {
// inputs : handle, value, lengths, flow_in
// outputs: flow_out
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(4 == inputs.size() && 1 == outputs.size());
auto inDes = TensorUtils::getDescribe(inputs[3]);
if (inDes->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
2022-01-04 10:50:40 +08:00
auto taParam = op->main_as_TensorArray();
int splitAxis = (taParam->axis() + inputs[1]->dimensions()) % inputs[1]->dimensions();
int keepdims = taParam->keepdims();
2021-01-06 16:29:37 +08:00
copyTensorArrayAttribute(inputs[3], outputs[0]);
outputs[0]->setType(op->main_as_TensorArray()->T());
auto outDes = TensorUtils::getDescribe(outputs[0]);
if (outDes->tensorArrayAttr->isIdenticalShape) {
std::vector<int> writeElemShape(inputs[1]->shape());
2022-01-04 10:50:40 +08:00
outDes->tensorArrayAttr->arraySize = writeElemShape[splitAxis];
if (keepdims) {
writeElemShape[splitAxis] = 1;
} else {
writeElemShape.erase(writeElemShape.begin() + splitAxis);
}
2021-01-06 16:29:37 +08:00
outDes->tensorArrayAttr->elemShape.emplace_back(std::move(writeElemShape));
} else {
auto value = inputs[1];
auto lengths = inputs[2];
2022-01-04 10:50:40 +08:00
bool scalarSplit = (lengths->elementSize() == 1);
std::vector<int> vShape(value->shape());
int totalLen = value->shape()[splitAxis], splitNum;
if (scalarSplit) {
splitNum = UP_DIV(totalLen, lengths->host<int>()[0]);
MNN_ASSERT(keepdims || lengths->host<int>()[0] == 1);
} else {
splitNum = lengths->length(0);
MNN_ASSERT(std::accumulate(lengths->host<int>(), lengths->host<int>() + splitNum, 0) == totalLen);
}
outDes->tensorArrayAttr->arraySize = splitNum;
for (int i = 0; i < splitNum; ++i) {
auto elemShape = vShape;
if (scalarSplit) {
if (!keepdims) {
elemShape.erase(elemShape.begin() + splitAxis);
} else {
int splitLen = lengths->host<int>()[0];
elemShape[splitAxis] = ALIMIN(splitLen, totalLen - i * splitLen);
}
} else {
elemShape[splitAxis] = lengths->host<int>()[i];
2021-09-18 15:52:30 +08:00
}
2022-01-04 10:50:40 +08:00
outDes->tensorArrayAttr->elemShape.emplace_back(std::move(elemShape));
2021-01-06 16:29:37 +08:00
}
}
updateTensorArrayDims(outputs[0]);
MNN_ASSERT(outDes->tensorArrayAttr != nullptr);
return true;
}
};
REGISTER_SHAPE_INPUTS(TensorArraySplitComputer, OpType_TensorArraySplit, {2});
// ============================ TensorArrayConcat ============================
class TensorArrayConcatComputer : public SizeComputer {
// inputs : handle, flow_in
// outputs: tensor
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size() && 1 == outputs.size());
auto inDes = TensorUtils::getDescribe(inputs[1]);
2022-01-04 10:50:40 +08:00
if (inDes->tensorArrayAttr == nullptr || inDes->tensorArrayAttr->arraySize == 0) {
2021-01-06 16:29:37 +08:00
MNN_ASSERT(false);
return false;
}
2022-01-04 10:50:40 +08:00
copyTensorArrayAttribute(inputs[1], outputs[0]);
auto tpParam = op->main_as_TensorArray();
int concatAxis = tpParam->axis(), newAxis = tpParam->new_axis();
2024-11-18 14:37:45 +08:00
outputs[0]->buffer().type = inputs[1]->buffer().type;
2022-01-04 10:50:40 +08:00
const auto& elemShapes = inDes->tensorArrayAttr->elemShape;
auto outShape = elemShapes[0];
bool valid = true; // avoid use MNN_ASSERT because it's no-op in release mode
for (int i = 1; valid && (i < elemShapes.size()); ++i) {
auto elemShape = elemShapes[inDes->tensorArrayAttr->isIdenticalShape ? 0 : i];
valid &= (outShape.size() == elemShape.size());
if (newAxis) {
valid &= (std::equal(outShape.begin(), outShape.end(), elemShape.begin()));
} else {
valid &= (std::equal(outShape.begin(), outShape.begin() + concatAxis, elemShape.begin()));
valid &= (std::equal(outShape.begin() + concatAxis + 1, outShape.end(), elemShape.begin() + concatAxis + 1));
outShape[concatAxis] += elemShape[concatAxis];
2021-01-06 16:29:37 +08:00
}
2022-01-04 10:50:40 +08:00
}
if (!valid) {
MNN_ERROR("Invalid input, elements in seq have different shape [new_axis=true need same shape, new_axis=false need same shape except concat_axis dim]\n");
return false;
}
if (newAxis) {
outShape.insert(outShape.begin() + concatAxis, inDes->tensorArrayAttr->arraySize);
}
outputs[0]->buffer().dimensions = outShape.size();
for (int i = 0; i < outShape.size(); ++i) {
outputs[0]->setLength(i, outShape[i]);
}
return true;
}
};
REGISTER_SHAPE(TensorArrayConcatComputer, OpType_TensorArrayConcat);
// ============================ TensorArrayInsert ============================
class TensorArrayInsertComputer : public SizeComputer {
// inputs : handle, position, value, flow_in
// outputs: flow_out
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(4 == inputs.size() && 1 == outputs.size());
auto inDes = TensorUtils::getDescribe(inputs[3]);
if (inDes->tensorArrayAttr == nullptr) {
MNN_ASSERT(false);
return false;
}
if (TensorUtils::getDescribe(inputs[2])->dimensionFormat != inDes->dimensionFormat) {
MNN_ASSERT(false);
return false;
}
MNN_ASSERT(inDes->tensorArrayAttr->isDynamicSize);
2022-06-10 10:39:50 +08:00
2022-01-04 10:50:40 +08:00
copyTensorArrayAttribute(inputs[3], outputs[0]);
auto outSeq = TensorUtils::getDescribe(outputs[0])->tensorArrayAttr;
outputs[0]->buffer().type = inputs[3]->buffer().type;
int inSeqSize = inDes->tensorArrayAttr->arraySize, insertIndex = inputs[1]->host<int32_t>()[0];
MNN_ASSERT(insertIndex >= -inSeqSize && insertIndex <= inSeqSize); // [-n, n]
insertIndex += (insertIndex < 0 ? inSeqSize : 0);
// update arraySize
outSeq->arraySize += 1;
// update elemShape
auto insertShape = inputs[2]->shape();
auto& outSeqShapes = outSeq->elemShape;
if (outSeq->isIdenticalShape && !outSeqShapes.empty()) {
MNN_ASSERT(std::equal(insertShape.begin(), insertShape.end(), outSeqShapes[0].begin()));
2021-01-06 16:29:37 +08:00
} else {
2022-01-04 10:50:40 +08:00
outSeqShapes.insert(outSeqShapes.begin() + insertIndex, insertShape);
}
updateTensorArrayDims(outputs[0]);
return true;
}
};
REGISTER_SHAPE_INPUTS(TensorArrayInsertComputer, OpType_TensorArrayInsert, {1});
// ============================ TensorArrayErase ============================
class TensorArrayEraseComputer : public SizeComputer {
// inputs : handle, position, flow_in
// outputs: flow_out
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(3 == inputs.size() && 1 == outputs.size());
auto inDes = TensorUtils::getDescribe(inputs[2]);
if (inDes->tensorArrayAttr == nullptr) {
2021-01-06 16:29:37 +08:00
MNN_ASSERT(false);
2022-01-04 10:50:40 +08:00
return false;
2021-01-06 16:29:37 +08:00
}
2022-01-04 10:50:40 +08:00
MNN_ASSERT(inDes->tensorArrayAttr->isDynamicSize);
2022-06-10 10:39:50 +08:00
2022-01-04 10:50:40 +08:00
copyTensorArrayAttribute(inputs[2], outputs[0]);
auto outSeq = TensorUtils::getDescribe(outputs[0])->tensorArrayAttr;
outputs[0]->buffer().type = inputs[2]->buffer().type;
int inSeqSize = outSeq->arraySize, eraseIndex = inputs[1]->host<int32_t>()[0];
MNN_ASSERT(eraseIndex >= -inSeqSize && eraseIndex < inSeqSize); // [-n, n-1]
eraseIndex += (eraseIndex < 0 ? inSeqSize : 0);
// update arraySize
outSeq->arraySize -= 1;
// update elemShape
if (!outSeq->isIdenticalShape) {
outSeq->elemShape.erase(outSeq->elemShape.begin() + eraseIndex);
}
updateTensorArrayDims(outputs[0]);
2021-01-06 16:29:37 +08:00
return true;
}
};
2022-01-04 10:50:40 +08:00
REGISTER_SHAPE_INPUTS(TensorArrayEraseComputer, OpType_TensorArrayErase, {1});
2021-01-06 16:29:37 +08:00
} // namespace MNN