mirror of https://github.com/alibaba/MNN.git
446 lines
20 KiB
C++
446 lines
20 KiB
C++
//
|
|
// ShapeTensorArray.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2020/12/21.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <numeric>
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
#include "math.h"
|
|
|
|
namespace MNN {
|
|
static void copyTensorArrayAttribute(const Tensor* src, Tensor* dst) {
|
|
auto srcDes = TensorUtils::getDescribe(src);
|
|
auto dstDes = TensorUtils::getDescribe(dst);
|
|
dstDes->dimensionFormat = srcDes->dimensionFormat;
|
|
dstDes->tensorArrayAttr.reset(new TensorArrayAttr);
|
|
dstDes->tensorArrayAttr->isDynamicSize = srcDes->tensorArrayAttr->isDynamicSize;
|
|
dstDes->tensorArrayAttr->isIdenticalShape = srcDes->tensorArrayAttr->isIdenticalShape;
|
|
dstDes->tensorArrayAttr->arraySize = srcDes->tensorArrayAttr->arraySize;
|
|
dstDes->tensorArrayAttr->elemShape = srcDes->tensorArrayAttr->elemShape;
|
|
}
|
|
|
|
static void updateTensorArrayDims(Tensor* t) {
|
|
auto des = TensorUtils::getDescribe(t);
|
|
// shape : [Sum(elemShape)]
|
|
t->buffer().dimensions = 1;
|
|
int totalSize = 0, arraySize = des->tensorArrayAttr->arraySize;
|
|
for (auto elem : des->tensorArrayAttr->elemShape) {
|
|
int elemSize = 1;
|
|
for (auto dim : elem) {
|
|
elemSize *= dim;
|
|
}
|
|
totalSize += elemSize;
|
|
}
|
|
if (des->tensorArrayAttr->elemShape.size() == 1 && arraySize > 1) {
|
|
totalSize *= arraySize;
|
|
} else if (totalSize == 0) {
|
|
totalSize = 1; // bypass MNNV3 Dynamic Graph Executor zeroShape check
|
|
}
|
|
t->setLength(0, totalSize);
|
|
t->setLength(1, 1);
|
|
t->setLength(2, 1);
|
|
t->setLength(3, 1);
|
|
}
|
|
|
|
// ============================ TensorArray ============================
|
|
class TensorArrayComputer : public SizeComputer {
|
|
// inputs : size
|
|
// outputs: handle, flow_out
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(1 == inputs.size() && 2 == outputs.size());
|
|
auto param = op->main_as_TensorArray();
|
|
for (int i = 0; i < 2; i++) {
|
|
auto& output = outputs[i];
|
|
auto des = TensorUtils::getDescribe(output);
|
|
// 1. set TensorArray attrs
|
|
des->tensorArrayAttr.reset(new TensorArrayAttr);
|
|
des->tensorArrayAttr->isDynamicSize = param->dynamic_size();
|
|
des->tensorArrayAttr->isIdenticalShape = param->identical_element_shapes();
|
|
if (param->element_shape() && param->element_shape()->size() > 0) {
|
|
std::vector<int> elemShape(param->element_shape()->size());
|
|
for (int i = 0; i < param->element_shape()->size(); i++) {
|
|
elemShape[i] = param->element_shape()->Get(i);
|
|
if (elemShape[i] < 0) {
|
|
elemShape[i] = 0;
|
|
}
|
|
}
|
|
des->tensorArrayAttr->elemShape.emplace_back(std::move(elemShape));
|
|
}
|
|
des->tensorArrayAttr->arraySize = inputs[0]->host<uint32_t>()[0];
|
|
// 2. set dtype, dimension format and dims
|
|
output->setType(param->T());
|
|
TensorUtils::getDescribe(output)->dimensionFormat = op->defaultDimentionFormat();
|
|
updateTensorArrayDims(output);
|
|
MNN_ASSERT(des->tensorArrayAttr != nullptr);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE_INPUTS(TensorArrayComputer, OpType_TensorArray, {0});
|
|
|
|
// ============================ TensorArraySize ============================
|
|
class TensorArraySizeComputer : public SizeComputer {
|
|
// inputs : handle, flow_in
|
|
// outputs: tensor
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(2 == inputs.size() && 1 == outputs.size());
|
|
MNN_ASSERT(TensorUtils::getDescribe(inputs[1])->tensorArrayAttr != nullptr);
|
|
outputs[0]->setType(DataType_DT_INT32);
|
|
outputs[0]->buffer().dimensions = 1;
|
|
outputs[0]->setLength(0, 1);
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[1])->dimensionFormat;
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE(TensorArraySizeComputer, OpType_TensorArraySize);
|
|
|
|
// ============================ TensorArrayRead ============================
|
|
class TensorArrayReadComputer : public SizeComputer {
|
|
// inputs : handle, index, flow_in
|
|
// outputs: tensor
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(3 == inputs.size() && 1 == outputs.size());
|
|
auto des = TensorUtils::getDescribe(inputs[2]);
|
|
if (des->tensorArrayAttr == nullptr) {
|
|
return false;
|
|
}
|
|
std::vector<int> readElemShape;
|
|
int readIndex = inputs[1]->host<uint32_t>()[0];
|
|
if (!des->tensorArrayAttr->isIdenticalShape && des->tensorArrayAttr->elemShape.size() > readIndex) {
|
|
readElemShape = des->tensorArrayAttr->elemShape[readIndex];
|
|
} else if (des->tensorArrayAttr->elemShape.size() >= 1) {
|
|
readElemShape = des->tensorArrayAttr->elemShape[0];
|
|
} else {
|
|
MNN_ASSERT(false);
|
|
}
|
|
outputs[0]->buffer().type = inputs[2]->buffer().type;
|
|
outputs[0]->buffer().dimensions = readElemShape.size();
|
|
for (int i = 0; i < readElemShape.size(); i++) {
|
|
outputs[0]->setLength(i, readElemShape[i]);
|
|
}
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[2])->dimensionFormat;
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE_INPUTS(TensorArrayReadComputer, OpType_TensorArrayRead, {1});
|
|
|
|
// ============================ TensorArrayWrite ============================
|
|
class TensorArrayWriteComputer : public SizeComputer {
|
|
// inputs : handle, index, value, flow_in
|
|
// outputs: flow_out
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(4 == inputs.size() && 1 == outputs.size());
|
|
auto inDes = TensorUtils::getDescribe(inputs[3]);
|
|
auto outDes = TensorUtils::getDescribe(outputs[0]);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
if (TensorUtils::getDescribe(inputs[2])->dimensionFormat != inDes->dimensionFormat) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
copyTensorArrayAttribute(inputs[3], outputs[0]);
|
|
outputs[0]->buffer().type = inputs[2]->buffer().type;
|
|
int writeIndex = inputs[1]->host<uint32_t>()[0];
|
|
// update arraySize
|
|
if (!inDes->tensorArrayAttr->isDynamicSize) {
|
|
MNN_ASSERT(writeIndex < inDes->tensorArrayAttr->arraySize);
|
|
} else if (writeIndex >= inDes->tensorArrayAttr->arraySize) {
|
|
outDes->tensorArrayAttr->arraySize = writeIndex + 1;
|
|
}
|
|
// update elemShape
|
|
auto writeShape = inputs[2]->shape();
|
|
if (outDes->tensorArrayAttr->isIdenticalShape) {
|
|
if (outDes->tensorArrayAttr->elemShape.empty()) {
|
|
outDes->tensorArrayAttr->elemShape.push_back(writeShape);
|
|
} else {
|
|
outDes->tensorArrayAttr->elemShape[0] = writeShape;
|
|
}
|
|
} else {
|
|
for (int i = outDes->tensorArrayAttr->elemShape.size(); i <= writeIndex; i++) {
|
|
outDes->tensorArrayAttr->elemShape.push_back(writeShape);
|
|
}
|
|
outDes->tensorArrayAttr->elemShape[writeIndex] = writeShape;
|
|
}
|
|
updateTensorArrayDims(outputs[0]);
|
|
MNN_ASSERT(outDes->tensorArrayAttr != nullptr);
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE_INPUTS(TensorArrayWriteComputer, OpType_TensorArrayWrite, {1});
|
|
|
|
// ============================ TensorArrayGather ============================
|
|
class TensorArrayGatherComputer : public SizeComputer {
|
|
// inputs : handle, indices, flow_in
|
|
// outputs: tensor
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(3 == inputs.size() && 1 == outputs.size());
|
|
auto inDes = TensorUtils::getDescribe(inputs[2]);
|
|
auto outDes = TensorUtils::getDescribe(outputs[0]);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
auto param = op->main_as_TensorArray();
|
|
outputs[0]->setType(param->T());
|
|
outDes->dimensionFormat = inDes->dimensionFormat;
|
|
outputs[0]->buffer().dimensions = inputs[2]->buffer().dimensions;
|
|
outputs[0]->setLength(0, inputs[1]->length(0));
|
|
// using param shape
|
|
if (param->element_shape() && param->element_shape()->size() > 0) {
|
|
outputs[0]->buffer().dimensions = param->element_shape()->size() + 1;
|
|
MNN_ASSERT(param->element_shape()->size() == inDes->tensorArrayAttr->elemShape[0].size());
|
|
for (int i = 0; i < param->element_shape()->size(); i++) {
|
|
int dimValue = param->element_shape()->Get(i);
|
|
if (dimValue < 0) {
|
|
dimValue = inDes->tensorArrayAttr->elemShape[0][i];
|
|
}
|
|
outputs[0]->setLength(1 + i, dimValue);
|
|
}
|
|
} else {
|
|
if (inDes->tensorArrayAttr->elemShape.size() == 1) {
|
|
for (int i = 0; i < inDes->tensorArrayAttr->elemShape[0].size(); i++) {
|
|
outputs[0]->setLength(1 + i, inDes->tensorArrayAttr->elemShape[0][i]);
|
|
}
|
|
} else {
|
|
MNN_ASSERT(false);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE_INPUTS(TensorArrayGatherComputer, OpType_TensorArrayGather, {1});
|
|
|
|
// ============================ TensorArrayScatter ============================
|
|
class TensorArrayScatterComputer : public SizeComputer {
|
|
// inputs : handle, indices, value, flow_in
|
|
// outputs: flow_out
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(4 == inputs.size() && 1 == outputs.size());
|
|
auto inDes = TensorUtils::getDescribe(inputs[3]);
|
|
auto outDes = TensorUtils::getDescribe(outputs[0]);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
if (TensorUtils::getDescribe(inputs[2])->dimensionFormat != inDes->dimensionFormat) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
copyTensorArrayAttribute(inputs[3], outputs[0]);
|
|
for (int i = 0; i < inputs[1]->length(0); i++) {
|
|
int writeIndex = inputs[1]->host<uint32_t>()[i];
|
|
if (!inDes->tensorArrayAttr->isDynamicSize) {
|
|
MNN_ASSERT(writeIndex < inDes->tensorArrayAttr->arraySize);
|
|
} else if (writeIndex >= inDes->tensorArrayAttr->arraySize) {
|
|
outDes->tensorArrayAttr->arraySize = writeIndex + 1;
|
|
}
|
|
std::vector<int> writeElemShape(inputs[2]->shape());
|
|
writeElemShape.erase(writeElemShape.begin());
|
|
if (outDes->tensorArrayAttr->elemShape.empty()) {
|
|
outDes->tensorArrayAttr->elemShape.emplace_back(std::move(writeElemShape));
|
|
} else {
|
|
outDes->tensorArrayAttr->elemShape[0] = writeElemShape;
|
|
}
|
|
}
|
|
outputs[0]->buffer().type = inputs[3]->buffer().type;
|
|
updateTensorArrayDims(outputs[0]);
|
|
MNN_ASSERT(outDes->tensorArrayAttr != nullptr);
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE_INPUTS(TensorArrayScatterComputer, OpType_TensorArrayScatter, {1});
|
|
|
|
// ============================ TensorArraySplit ============================
|
|
class TensorArraySplitComputer : public SizeComputer {
|
|
// inputs : handle, value, lengths, flow_in
|
|
// outputs: flow_out
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(4 == inputs.size() && 1 == outputs.size());
|
|
auto inDes = TensorUtils::getDescribe(inputs[3]);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
auto taParam = op->main_as_TensorArray();
|
|
int splitAxis = (taParam->axis() + inputs[1]->dimensions()) % inputs[1]->dimensions();
|
|
int keepdims = taParam->keepdims();
|
|
copyTensorArrayAttribute(inputs[3], outputs[0]);
|
|
outputs[0]->setType(op->main_as_TensorArray()->T());
|
|
auto outDes = TensorUtils::getDescribe(outputs[0]);
|
|
if (outDes->tensorArrayAttr->isIdenticalShape) {
|
|
std::vector<int> writeElemShape(inputs[1]->shape());
|
|
outDes->tensorArrayAttr->arraySize = writeElemShape[splitAxis];
|
|
if (keepdims) {
|
|
writeElemShape[splitAxis] = 1;
|
|
} else {
|
|
writeElemShape.erase(writeElemShape.begin() + splitAxis);
|
|
}
|
|
outDes->tensorArrayAttr->elemShape.emplace_back(std::move(writeElemShape));
|
|
} else {
|
|
auto value = inputs[1];
|
|
auto lengths = inputs[2];
|
|
bool scalarSplit = (lengths->elementSize() == 1);
|
|
std::vector<int> vShape(value->shape());
|
|
int totalLen = value->shape()[splitAxis], splitNum;
|
|
if (scalarSplit) {
|
|
splitNum = UP_DIV(totalLen, lengths->host<int>()[0]);
|
|
MNN_ASSERT(keepdims || lengths->host<int>()[0] == 1);
|
|
} else {
|
|
splitNum = lengths->length(0);
|
|
MNN_ASSERT(std::accumulate(lengths->host<int>(), lengths->host<int>() + splitNum, 0) == totalLen);
|
|
}
|
|
outDes->tensorArrayAttr->arraySize = splitNum;
|
|
for (int i = 0; i < splitNum; ++i) {
|
|
auto elemShape = vShape;
|
|
if (scalarSplit) {
|
|
if (!keepdims) {
|
|
elemShape.erase(elemShape.begin() + splitAxis);
|
|
} else {
|
|
int splitLen = lengths->host<int>()[0];
|
|
elemShape[splitAxis] = ALIMIN(splitLen, totalLen - i * splitLen);
|
|
}
|
|
} else {
|
|
elemShape[splitAxis] = lengths->host<int>()[i];
|
|
}
|
|
outDes->tensorArrayAttr->elemShape.emplace_back(std::move(elemShape));
|
|
}
|
|
}
|
|
updateTensorArrayDims(outputs[0]);
|
|
MNN_ASSERT(outDes->tensorArrayAttr != nullptr);
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE_INPUTS(TensorArraySplitComputer, OpType_TensorArraySplit, {2});
|
|
|
|
// ============================ TensorArrayConcat ============================
|
|
class TensorArrayConcatComputer : public SizeComputer {
|
|
// inputs : handle, flow_in
|
|
// outputs: tensor
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(2 == inputs.size() && 1 == outputs.size());
|
|
auto inDes = TensorUtils::getDescribe(inputs[1]);
|
|
if (inDes->tensorArrayAttr == nullptr || inDes->tensorArrayAttr->arraySize == 0) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
copyTensorArrayAttribute(inputs[1], outputs[0]);
|
|
auto tpParam = op->main_as_TensorArray();
|
|
int concatAxis = tpParam->axis(), newAxis = tpParam->new_axis();
|
|
outputs[0]->buffer().type = inputs[1]->buffer().type;
|
|
const auto& elemShapes = inDes->tensorArrayAttr->elemShape;
|
|
auto outShape = elemShapes[0];
|
|
bool valid = true; // avoid use MNN_ASSERT because it's no-op in release mode
|
|
for (int i = 1; valid && (i < elemShapes.size()); ++i) {
|
|
auto elemShape = elemShapes[inDes->tensorArrayAttr->isIdenticalShape ? 0 : i];
|
|
valid &= (outShape.size() == elemShape.size());
|
|
if (newAxis) {
|
|
valid &= (std::equal(outShape.begin(), outShape.end(), elemShape.begin()));
|
|
} else {
|
|
valid &= (std::equal(outShape.begin(), outShape.begin() + concatAxis, elemShape.begin()));
|
|
valid &= (std::equal(outShape.begin() + concatAxis + 1, outShape.end(), elemShape.begin() + concatAxis + 1));
|
|
outShape[concatAxis] += elemShape[concatAxis];
|
|
}
|
|
}
|
|
if (!valid) {
|
|
MNN_ERROR("Invalid input, elements in seq have different shape [new_axis=true need same shape, new_axis=false need same shape except concat_axis dim]\n");
|
|
return false;
|
|
}
|
|
if (newAxis) {
|
|
outShape.insert(outShape.begin() + concatAxis, inDes->tensorArrayAttr->arraySize);
|
|
}
|
|
outputs[0]->buffer().dimensions = outShape.size();
|
|
for (int i = 0; i < outShape.size(); ++i) {
|
|
outputs[0]->setLength(i, outShape[i]);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE(TensorArrayConcatComputer, OpType_TensorArrayConcat);
|
|
|
|
// ============================ TensorArrayInsert ============================
|
|
class TensorArrayInsertComputer : public SizeComputer {
|
|
// inputs : handle, position, value, flow_in
|
|
// outputs: flow_out
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(4 == inputs.size() && 1 == outputs.size());
|
|
auto inDes = TensorUtils::getDescribe(inputs[3]);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
if (TensorUtils::getDescribe(inputs[2])->dimensionFormat != inDes->dimensionFormat) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
MNN_ASSERT(inDes->tensorArrayAttr->isDynamicSize);
|
|
|
|
copyTensorArrayAttribute(inputs[3], outputs[0]);
|
|
auto outSeq = TensorUtils::getDescribe(outputs[0])->tensorArrayAttr;
|
|
outputs[0]->buffer().type = inputs[3]->buffer().type;
|
|
int inSeqSize = inDes->tensorArrayAttr->arraySize, insertIndex = inputs[1]->host<int32_t>()[0];
|
|
MNN_ASSERT(insertIndex >= -inSeqSize && insertIndex <= inSeqSize); // [-n, n]
|
|
insertIndex += (insertIndex < 0 ? inSeqSize : 0);
|
|
// update arraySize
|
|
outSeq->arraySize += 1;
|
|
// update elemShape
|
|
auto insertShape = inputs[2]->shape();
|
|
auto& outSeqShapes = outSeq->elemShape;
|
|
if (outSeq->isIdenticalShape && !outSeqShapes.empty()) {
|
|
MNN_ASSERT(std::equal(insertShape.begin(), insertShape.end(), outSeqShapes[0].begin()));
|
|
} else {
|
|
outSeqShapes.insert(outSeqShapes.begin() + insertIndex, insertShape);
|
|
}
|
|
updateTensorArrayDims(outputs[0]);
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE_INPUTS(TensorArrayInsertComputer, OpType_TensorArrayInsert, {1});
|
|
|
|
// ============================ TensorArrayErase ============================
|
|
class TensorArrayEraseComputer : public SizeComputer {
|
|
// inputs : handle, position, flow_in
|
|
// outputs: flow_out
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(3 == inputs.size() && 1 == outputs.size());
|
|
auto inDes = TensorUtils::getDescribe(inputs[2]);
|
|
if (inDes->tensorArrayAttr == nullptr) {
|
|
MNN_ASSERT(false);
|
|
return false;
|
|
}
|
|
MNN_ASSERT(inDes->tensorArrayAttr->isDynamicSize);
|
|
|
|
copyTensorArrayAttribute(inputs[2], outputs[0]);
|
|
auto outSeq = TensorUtils::getDescribe(outputs[0])->tensorArrayAttr;
|
|
outputs[0]->buffer().type = inputs[2]->buffer().type;
|
|
int inSeqSize = outSeq->arraySize, eraseIndex = inputs[1]->host<int32_t>()[0];
|
|
MNN_ASSERT(eraseIndex >= -inSeqSize && eraseIndex < inSeqSize); // [-n, n-1]
|
|
eraseIndex += (eraseIndex < 0 ? inSeqSize : 0);
|
|
// update arraySize
|
|
outSeq->arraySize -= 1;
|
|
// update elemShape
|
|
if (!outSeq->isIdenticalShape) {
|
|
outSeq->elemShape.erase(outSeq->elemShape.begin() + eraseIndex);
|
|
}
|
|
updateTensorArrayDims(outputs[0]);
|
|
return true;
|
|
}
|
|
};
|
|
REGISTER_SHAPE_INPUTS(TensorArrayEraseComputer, OpType_TensorArrayErase, {1});
|
|
} // namespace MNN
|