| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  ShapeShape.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2019/01/10.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  | #include "shape/SizeComputer.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | #include "core/TensorUtils.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ShapeSizeComputer : public SizeComputer { | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor*>& outputs) const override { | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |         MNN_ASSERT(1 <= inputs.size()); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         MNN_ASSERT(1 == outputs.size()); | 
					
						
							|  |  |  |         auto& ib = inputs[0]->buffer(); | 
					
						
							|  |  |  |         auto& ob = outputs[0]->buffer(); | 
					
						
							| 
									
										
										
										
											2020-07-04 01:21:30 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         ob.dimensions = 1; | 
					
						
							|  |  |  |         outputs[0]->setType(DataType_DT_INT32); | 
					
						
							| 
									
										
										
										
											2019-09-01 19:25:26 +08:00
										 |  |  |         TensorUtils::getDescribe(outputs[0])->dimensionFormat = op->defaultDimentionFormat(); | 
					
						
							| 
									
										
										
										
											2020-03-22 20:16:29 +08:00
										 |  |  |         auto inputFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat; | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |         if (inputFormat == MNN_DATA_FORMAT_NC4HW4 && op->defaultDimentionFormat() == MNN_DATA_FORMAT_NHWC) { | 
					
						
							|  |  |  |             // For compability
 | 
					
						
							| 
									
										
										
										
											2019-07-19 17:09:09 +08:00
										 |  |  |             ob.dim[0].extent = 4; | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |             ob.dim[0].extent = ib.dimensions; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | REGISTER_SHAPE(ShapeSizeComputer, OpType_Shape); | 
					
						
							| 
									
										
										
										
											2022-02-18 11:30:27 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | class ShapeRasterComputer : public SizeComputer { | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         MNN_ASSERT(1 == outputs.size()); | 
					
						
							|  |  |  |         auto extra  = op->main_as_Extra(); | 
					
						
							|  |  |  |         if (!extra) { | 
					
						
							|  |  |  |             // copy dims
 | 
					
						
							| 
									
										
										
										
											2022-12-30 15:18:58 +08:00
										 |  |  |             MNN_ASSERT(1 <= inputs.size()); | 
					
						
							|  |  |  |             outputs[0]->buffer().type = inputs[0]->buffer().type; | 
					
						
							| 
									
										
										
										
											2022-02-18 11:30:27 +08:00
										 |  |  |             TensorUtils::copyShape(inputs[0], outputs[0], true); | 
					
						
							|  |  |  |         } else { | 
					
						
							| 
									
										
										
										
											2022-12-30 15:18:58 +08:00
										 |  |  |             if (inputs.size() > 0) { | 
					
						
							|  |  |  |                 outputs[0]->buffer().type = inputs[0]->buffer().type; | 
					
						
							|  |  |  |                 TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat; | 
					
						
							|  |  |  |             } | 
					
						
							| 
									
										
										
										
											2022-02-18 11:30:27 +08:00
										 |  |  |             for (int i = 0; i < extra->attr()->size(); i++) { | 
					
						
							|  |  |  |                 auto attr = extra->attr()->Get(i); | 
					
						
							|  |  |  |                 if (attr->key()->str() == "shape") { | 
					
						
							| 
									
										
										
										
											2022-12-30 15:18:58 +08:00
										 |  |  |                     outputs[0]->buffer().dimensions = 0; | 
					
						
							|  |  |  |                     if (attr->list()->i() != nullptr) { | 
					
						
							|  |  |  |                         int len = attr->list()->i()->size(); | 
					
						
							|  |  |  |                         outputs[0]->buffer().dimensions = len; | 
					
						
							|  |  |  |                         for (int j = 0; j < len; j++) { | 
					
						
							|  |  |  |                             outputs[0]->setLength(j, attr->list()->i()->Get(j)); | 
					
						
							|  |  |  |                         } | 
					
						
							| 
									
										
										
										
											2022-02-18 11:30:27 +08:00
										 |  |  |                     } | 
					
						
							| 
									
										
										
										
											2022-12-30 15:18:58 +08:00
										 |  |  |                     continue; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 if (attr->key()->str() == "code") { | 
					
						
							|  |  |  |                     outputs[0]->buffer().type.code = (halide_type_code_t)attr->i(); | 
					
						
							|  |  |  |                     continue; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 if (attr->key()->str() == "bits") { | 
					
						
							|  |  |  |                     outputs[0]->buffer().type.bits = attr->i(); | 
					
						
							|  |  |  |                     continue; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 if (attr->key()->str() == "format") { | 
					
						
							|  |  |  |                     TensorUtils::getDescribe(outputs[0])->dimensionFormat = (MNN_DATA_FORMAT)attr->i(); | 
					
						
							|  |  |  |                     continue; | 
					
						
							| 
									
										
										
										
											2022-02-18 11:30:27 +08:00
										 |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | REGISTER_SHAPE(ShapeRasterComputer, OpType_Raster); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | } // namespace MNN
 |