MNN/source/backend/cpu/CPUSoftmax.cpp

292 lines
9.9 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUSoftmax.cpp
// MNN
//
// Created by MNN on 2018/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUSoftmax.hpp"
#include "Concurrency.h"
2019-04-17 10:49:11 +08:00
#include <math.h>
#include "CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "Macro.h"
#include "TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
namespace MNN {
static void elementwiseExp(float* dst, const float* src, int dataSize) {
int countC8 = dataSize / 8;
if (countC8 > 0) {
// Align to eight so asm is easier to write
static float parameters[] = {
(float)log(2.0f), 1.0f / (float)log(2.0f), 1.0f, 1.0f, 0.5f, 1.0f / 6.0f, 1.0f / 24.0f, 1.0f / 120.0f};
MNNExpC8(dst, src, parameters, countC8);
}
int remain = countC8 * 8;
auto param = log(2.0f);
for (int i = remain; i < dataSize; i++) {
/*Origin Function*/
//dst[i] = expf(-src[i]);
/*Approciate Function*/
auto x = -src[i];
int div = (x / param);
auto xReamin = x - div * param;
div = std::min(div, 24);
div = std::max(div, -24);
float expBasic = 1.0;
if (div < 0) {
expBasic = 1.0f / (1 << (-div));
} else {
expBasic = (float)(1 << div);
}
auto t = xReamin;
auto expRemain = ((((1.0f / 120 * t + 1.0f / 24) * t + 1.0f / 6) * t + 0.5f) * t + 1.0f) * t + 1.0f;
dst[i] = expBasic * expRemain;
}
}
static int _softmax1(const float *srcData, float *dstData, int outside, int channel, int threadNum) {
MNN_CONCURRENCY_BEGIN(tId, threadNum);
{
const float *srcY = srcData + tId * channel;
float *dstY = dstData + tId * channel;
for (int y = (int)tId; y < outside; y += threadNum, srcY += channel*threadNum, dstY += channel*threadNum) {
float maxValue = srcY[0];
{
int c = 1;
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
#if !(defined(__ARM_FEATURE_FMA) && defined(__aarch64__))
#define vmaxvq_f32(v) \
({ \
float __m = v[0]; \
for (int i = 1; i < 4; i++) { \
if (v[i] > __m) \
__m = v[i]; \
} \
__m; \
})
#endif
if (c + 3 < channel) {
float32x4_t maxx4 = vld1q_f32(srcY + c);
c += 4;
for (; c + 3 < channel; c += 4) {
maxx4 = vmaxq_f32(maxx4, vld1q_f32(srcY + c));
}
float value = vmaxvq_f32(maxx4);
if (value > maxValue)
maxValue = value;
2019-04-17 10:49:11 +08:00
}
#endif
for (; c < channel; ++c) {
float value = srcY[c];
if (value > maxValue)
maxValue = value;
}
2019-04-17 10:49:11 +08:00
}
for (int c = 0; c < channel; ++c) {
dstY[c] = -srcY[c] + maxValue;
}
elementwiseExp(dstY, dstY, channel);
// sum
float sumValue = 0;
2019-04-17 10:49:11 +08:00
for (int c = 0; c < channel; ++c) {
sumValue += dstY[c];
2019-04-17 10:49:11 +08:00
}
// div
{
int c = 0;
#ifdef MNN_USE_NEON
float div = 1.f / sumValue;
for (; c + 3 < channel; c += 4) {
vst1q_f32(dstY + c, vmulq_n_f32(vld1q_f32(dstY + c), div));
}
2019-04-17 10:49:11 +08:00
#endif
for (; c < channel; ++c) {
dstY[c] /= sumValue;
}
2019-04-17 10:49:11 +08:00
}
}
}
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return 0;
}
static int _softmaxCommon(const float *srcData, float *dstData, int inside, int outside, int channel, float* maxValue, float* sumValue, int threadNum) {
2019-04-17 10:49:11 +08:00
if (inside == 1)
return _softmax1(srcData, dstData, outside, channel, threadNum);
2019-04-17 10:49:11 +08:00
const int stepY = inside * channel;
MNN_CONCURRENCY_BEGIN(tId, threadNum);
{
const float *srcY = srcData + tId * stepY;
float *dstY = dstData + tId * stepY;
float* maxValueSub = maxValue + tId * inside;
float* sumValueSub = sumValue + tId * inside;
for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
memcpy(maxValueSub, srcY, sizeof(float) * inside);
const float *src = srcY + inside;
for (int c = 1; c < channel; ++c, src += inside) {
for (int x = 0; x < inside; ++x) {
if (src[x] > maxValueSub[x])
maxValueSub[x] = src[x];
}
2019-04-17 10:49:11 +08:00
}
memset(sumValueSub, 0, sizeof(float) * inside);
src = srcY;
float *dst = dstY;
for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
for (int x = 0; x < inside; ++x) {
dst[x] = -src[x] + maxValueSub[x];
}
2019-04-17 10:49:11 +08:00
}
dst = dstY;
elementwiseExp(dst, dst, inside*channel);
for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
for (int x = 0; x < inside; ++x) {
sumValueSub[x] += dst[x];
}
}
dst = dstY;
for (int c = 0; c < channel; ++c, dst += inside) {
for (int x = 0; x < inside; ++x) {
dst[x] /= sumValueSub[x];
}
2019-04-17 10:49:11 +08:00
}
}
}
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return 0;
}
ErrorCode CPUSoftmax::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
const int dimensions = input->buffer().dimensions;
if (-1 == mAxis) {
mAxis = dimensions - 1;
}
const auto layout = TensorUtils::getDescribe(input)->dimensionFormat;
mNeedUnpackC4 = layout == MNN_DATA_FORMAT_NC4HW4;
if (mNeedUnpackC4) {
int totalSize = 1;
for (int i = 0; i < dimensions; ++i) {
totalSize *= input->length(i);
}
mStorage.buffer().dim[0].extent = 1;
mStorage.buffer().dim[1].extent = totalSize;
mStorage.buffer().dim[1].flags = 0;
mStorage.buffer().dimensions = 2;
mStorage.buffer().type = input->getType();
backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
}
int inside = 1;
int dims = input->buffer().dimensions;
for (int i = mAxis + 1; i < dims; ++i) {
inside *= input->length(i);
}
if (inside != 1) { // not run _softmax1, we need maxValue Tensor and sumValue Tensor.
int threadNum = ((CPUBackend*)backend())->threadNumber();
mMaxValue.buffer().dim[0].extent = inside * threadNum;
mMaxValue.buffer().dimensions = 1;
mMaxValue.setType(DataType_DT_FLOAT);
backend()->onAcquireBuffer(&mMaxValue, Backend::DYNAMIC);
mSumValue.buffer().dim[0].extent = inside * threadNum;
mSumValue.buffer().dimensions = 1;
mSumValue.setType(DataType_DT_FLOAT);
backend()->onAcquireBuffer(&mSumValue, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mMaxValue, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mSumValue, Backend::DYNAMIC);
}
if (mNeedUnpackC4) {
backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
2019-04-17 10:49:11 +08:00
}
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
ErrorCode CPUSoftmax::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto inputTensor = inputs[0];
auto outputTensor = outputs[0];
const auto inputDataPtr = inputTensor->host<float>();
auto outputDataPtr = outputTensor->host<float>();
const int batch = inputTensor->batch();
const auto dims = inputTensor->buffer().dimensions;
float *tempData = nullptr;
if (mNeedUnpackC4) {
tempData = mStorage.host<float>();
2019-04-17 10:49:11 +08:00
}
2019-04-17 10:49:11 +08:00
int areaInput = 1;
for (int i = 2; i < dims; ++i) {
areaInput *= inputTensor->length(i);
2019-04-17 10:49:11 +08:00
}
int inside = 1;
int outside = 1;
int channel = 1;
for (int i = 1; i < mAxis; ++i) {
outside *= inputTensor->length(i);
2019-04-17 10:49:11 +08:00
}
channel = inputTensor->length(mAxis);
for (int i = mAxis + 1; i < dims; ++i) {
inside *= inputTensor->length(i);
2019-04-17 10:49:11 +08:00
}
int threadNum = ((CPUBackend*)backend())->threadNumber();
int batchSize = outputTensor->size() / sizeof(float) / batch;
for (int batchIndex = 0; batchIndex < batch; ++batchIndex) {
auto inputData = inputDataPtr + batchIndex * batchSize;
auto outputData = outputDataPtr + batchIndex * batchSize;
if (1 == areaInput || !mNeedUnpackC4) {
_softmaxCommon(inputData, outputData, inside, outside, channel, mMaxValue.host<float>(), mSumValue.host<float>(), threadNum);
2019-04-17 10:49:11 +08:00
continue;
}
MNNUnpackC4(outputData, inputData, areaInput, inputTensor->channel());
_softmaxCommon(outputData, tempData, inside, outside, channel, mMaxValue.host<float>(), mSumValue.host<float>(), threadNum);
2019-04-17 10:49:11 +08:00
MNNPackC4(outputData, tempData, areaInput, outputTensor->channel());
}
return NO_ERROR;
}
CPUSoftmax::CPUSoftmax(Backend *b, int axis) : MNN::Execution(b), mAxis(axis), mStorage(2), mNeedUnpackC4(false) {
2019-04-17 10:49:11 +08:00
// nothing to do
}
class CPUSoftmaxCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new CPUSoftmax(backend, op->main_as_Axis()->axis());
}
};
REGISTER_CPU_OP_CREATOR(CPUSoftmaxCreator, OpType_Softmax);
} // namespace MNN