mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
	
		
			2.0 KiB
		
	
	
	
	
	
			
		
		
	
	
			2.0 KiB
		
	
	
	
	
	
data.DataLoader
class DataSet
DataLoader数据加载器,支持数据批处理和随机采样
DataLoader(dataset, batch_size, shuffle, num_workers)
创建一个DataLoader
参数:
- dataset:DataSet数据集实例
- batch_size:int批处理大小
- shuffle:bool打乱数据集标记,默认为True
- num_workers:int线程数,默认为0
返回:数据加载器
返回类型:DataLoader
iter_number
返回总迭代次数,当剩余的数据在一个批次大小中没有满仍然会被加载
属性类型:只读
类型:int
size
获取数据集大小
属性类型:只读
类型:int
reset()
重置数据加载器,数据加载器每次用完后都需要重置
返回:None
返回类型:None
next()
在数据集中获取批量数据
返回:([Var], [Var]) 两组数据,第一组为输入数据,第二组为结果数据
返回类型:tuple
示例:
train_dataset = MnistDataset(True)
test_dataset = MnistDataset(False)
train_dataloader = data.DataLoader(train_dataset, batch_size = 64, shuffle = True)
test_dataloader = data.DataLoader(test_dataset, batch_size = 100, shuffle = False)
...
# use in training
def train_func(net, train_dataloader, opt):
    """train function"""
    net.train(True)
    # need to reset when the data loader exhausted
    train_dataloader.reset()
    t0 = time.time()
    for i in range(train_dataloader.iter_number):
        example = train_dataloader.next()
        input_data = example[0]
        output_target = example[1]
        data = input_data[0]  # which input, model may have more than one inputs
        label = output_target[0]  # also, model may have more than one outputs
        predict = net.forward(data)
        target = expr.one_hot(expr.cast(label, expr.int), 10, 1, 0)
        loss = nn.loss.cross_entropy(predict, target)
        opt.step(loss)
        if i % 100 == 0:
            print("train loss: ", loss.read())