mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
	
		
			1.7 KiB
		
	
	
	
	
	
			
		
		
	
	
			1.7 KiB
		
	
	
	
	
	
optim
module optim
optim时优化器模块,提供了一个优化器基类Optimizer,并提供了SGD和ADAM优化器实现;主要用于训练阶段迭代优化
optim Types
optim.Regularization_Method
优化器的正则化方法,提供了L1和L2正则化方法
- 类型:Enum
- 枚举值:
- L1
- L2
- L1L2
 
SGD(module, lr, momentum, weight_decay, regularization_method)
创建一个SGD优化器
参数:
- module:_Module模型实例
- lr:float学习率
- momentum:float动量,默认为0.9
- weight_decay:float权重衰减,默认为0.0
- regularization_method:RegularizationMethod正则化方法,默认为L2正则化
返回:SGD优化器实例
返回类型:Optimizer
示例:
model = Net()
sgd = optim.SGD(model, 0.001, 0.9, 0.0005, optim.Regularization_Method.L2)
# feed some date to the model, then get the loss
loss = ...
sgd.step(loss) # backward and update parameters in the model
ADAM(module, lr, momentum, momentum2, weight_decay, eps, regularization_method)
创建一个ADAM优化器
参数:
- module:_Module模型实例
- lr:float学习率
- momentum:float动量,默认为0.9
- momentum2:float动量2,默认为0.999
- weight_decay:float权重衰减,默认为0.0
- eps:float正则化阈值,默认为1e-8
- regularization_method:RegularizationMethod正则化方法,默认为L2正则化
返回:ADAM优化器实例
返回类型:Optimizer
示例:
model = Net()
sgd = optim.ADAM(model, 0.001)
# feed some date to the model, then get the loss
loss = ...
sgd.step(loss) # backward and update parameters in the model