MNN/source/backend/cpu/CPUBatchMatMul.cpp

123 lines
5.0 KiB
C++

//
// CPUBatchMatMul.cpp
// MNN
//
// Created by MNN on 2019/03/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/cpu/CPUBatchMatMul.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "math/Matrix.hpp"
#include "core/TensorUtils.hpp"
#include "core/BufferAllocator.hpp"
#include "core/Concurrency.h"
namespace MNN {
CPUBatchMatMul::CPUBatchMatMul(Backend* backend, bool adjX, bool adjY) : Execution(backend) {
auto threadNumber = static_cast<CPUBackend*>(backend)->threadNumber();
for (int i = 0; i < threadNumber; ++i) {
Unit unit;
unit.mMatrixA.reset(new Tensor);
unit.mMatrixB.reset(new Tensor);
unit.mMatrixC.reset(new Tensor);
unit.mMatMul.reset(new CPUMatMul(backend, adjX, adjY, false));
unit.mMatrixB->buffer().dimensions = 2;
unit.mMatrixA->buffer().dimensions = 2;
unit.mMatrixC->buffer().dimensions = 2;
unit.mTempInputs = {unit.mMatrixA.get(), unit.mMatrixB.get()};
unit.mTempOutputs = {unit.mMatrixC.get()};
mUnits.emplace_back(std::move(unit));
}
}
ErrorCode CPUBatchMatMul::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
// Fill output by zero if one of inputs is empty.
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
return NO_ERROR;
}
auto dimensions = input0->dimensions();
int threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
int batch = 1;
for (int i = 0; i < dimensions - 2; ++i) {
batch *= input0->length(i);
}
mBatch = batch;
if (threadNumber > batch) {
threadNumber = batch;
}
auto memoryPool = static_cast<CPUBackend*>(backend())->getBufferAllocator();
memoryPool->barrierBegin();
std::shared_ptr<void> __a(nullptr, [memoryPool](void *) { memoryPool->barrierEnd(); });
for (int i = 0; i < threadNumber; ++i) {
memoryPool->beginGroup();
std::shared_ptr<void> __b(nullptr, [memoryPool](void *) { memoryPool->endGroup(); });
auto& unit = mUnits[i];
unit.mMatrixA->setLength(0, input0->length(input0->dimensions()-2));
unit.mMatrixA->setLength(1, input0->length(input0->dimensions()-1));
unit.mMatrixB->setLength(0, input1->length(input1->dimensions()-2));
unit.mMatrixB->setLength(1, input1->length(input1->dimensions()-1));
unit.mMatrixC->setLength(0, output->length(output->dimensions()-2));
unit.mMatrixC->setLength(1, output->length(output->dimensions()-1));
TensorUtils::setLinearLayout(unit.mMatrixA.get());
TensorUtils::setLinearLayout(unit.mMatrixB.get());
TensorUtils::setLinearLayout(unit.mMatrixC.get());
auto code = unit.mMatMul->onResize(unit.mTempInputs, unit.mTempOutputs);
}
return NO_ERROR;
}
ErrorCode CPUBatchMatMul::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
// Fill output by zero if one of inputs is empty.
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
::memset(output->host<float>(), 0, output->size());
return NO_ERROR;
}
const int dimensions = input0->dimensions();
MNN_ASSERT(dimensions >= 3);
const int input0Stride = input0->length(dimensions - 1) * input0->length(dimensions - 2);
const int input1Stride = input1->length(dimensions - 1) * input1->length(dimensions - 2);
const int outputStride = output->length(dimensions - 1) * output->length(dimensions - 2);
const auto input0Ptr = input0->host<float>();
const auto input1Ptr = input1->host<float>();
float* const outputPtr = output->host<float>();
int threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
if (threadNumber > mBatch) {
threadNumber = mBatch;
}
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
auto& unit = mUnits[tId];
for (int i = (int)tId; i < mBatch; i+=threadNumber) {
unit.mMatrixA->buffer().host = (uint8_t*)(input0Ptr + i * input0Stride);
unit.mMatrixB->buffer().host = (uint8_t*)(input1Ptr + i * input1Stride);
unit.mMatrixC->buffer().host = (uint8_t*)(outputPtr + i * outputStride);
unit.mMatMul->onExecute(unit.mTempInputs, unit.mTempOutputs);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
class CPUBatchMatMulCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPUBatchMatMul(backend, op->main_as_BatchMatMulParam()->adjX(), op->main_as_BatchMatMulParam()->adjY());
}
};
REGISTER_CPU_OP_CREATOR(CPUBatchMatMulCreator, OpType_BatchMatMul);
} // namespace MNN