mirror of https://github.com/alibaba/MNN.git
123 lines
5.0 KiB
C++
123 lines
5.0 KiB
C++
//
|
|
// CPUBatchMatMul.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/03/25.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/cpu/CPUBatchMatMul.hpp"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "math/Matrix.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "core/BufferAllocator.hpp"
|
|
#include "core/Concurrency.h"
|
|
|
|
namespace MNN {
|
|
|
|
CPUBatchMatMul::CPUBatchMatMul(Backend* backend, bool adjX, bool adjY) : Execution(backend) {
|
|
auto threadNumber = static_cast<CPUBackend*>(backend)->threadNumber();
|
|
for (int i = 0; i < threadNumber; ++i) {
|
|
Unit unit;
|
|
unit.mMatrixA.reset(new Tensor);
|
|
unit.mMatrixB.reset(new Tensor);
|
|
unit.mMatrixC.reset(new Tensor);
|
|
unit.mMatMul.reset(new CPUMatMul(backend, adjX, adjY, false));
|
|
unit.mMatrixB->buffer().dimensions = 2;
|
|
unit.mMatrixA->buffer().dimensions = 2;
|
|
unit.mMatrixC->buffer().dimensions = 2;
|
|
unit.mTempInputs = {unit.mMatrixA.get(), unit.mMatrixB.get()};
|
|
unit.mTempOutputs = {unit.mMatrixC.get()};
|
|
mUnits.emplace_back(std::move(unit));
|
|
}
|
|
}
|
|
|
|
ErrorCode CPUBatchMatMul::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
auto input0 = inputs[0];
|
|
auto input1 = inputs[1];
|
|
auto output = outputs[0];
|
|
// Fill output by zero if one of inputs is empty.
|
|
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
|
|
return NO_ERROR;
|
|
}
|
|
auto dimensions = input0->dimensions();
|
|
int threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
|
|
int batch = 1;
|
|
for (int i = 0; i < dimensions - 2; ++i) {
|
|
batch *= input0->length(i);
|
|
}
|
|
mBatch = batch;
|
|
if (threadNumber > batch) {
|
|
threadNumber = batch;
|
|
}
|
|
auto memoryPool = static_cast<CPUBackend*>(backend())->getBufferAllocator();
|
|
memoryPool->barrierBegin();
|
|
std::shared_ptr<void> __a(nullptr, [memoryPool](void *) { memoryPool->barrierEnd(); });
|
|
for (int i = 0; i < threadNumber; ++i) {
|
|
memoryPool->beginGroup();
|
|
std::shared_ptr<void> __b(nullptr, [memoryPool](void *) { memoryPool->endGroup(); });
|
|
auto& unit = mUnits[i];
|
|
unit.mMatrixA->setLength(0, input0->length(input0->dimensions()-2));
|
|
unit.mMatrixA->setLength(1, input0->length(input0->dimensions()-1));
|
|
|
|
unit.mMatrixB->setLength(0, input1->length(input1->dimensions()-2));
|
|
unit.mMatrixB->setLength(1, input1->length(input1->dimensions()-1));
|
|
|
|
unit.mMatrixC->setLength(0, output->length(output->dimensions()-2));
|
|
unit.mMatrixC->setLength(1, output->length(output->dimensions()-1));
|
|
|
|
TensorUtils::setLinearLayout(unit.mMatrixA.get());
|
|
TensorUtils::setLinearLayout(unit.mMatrixB.get());
|
|
TensorUtils::setLinearLayout(unit.mMatrixC.get());
|
|
|
|
auto code = unit.mMatMul->onResize(unit.mTempInputs, unit.mTempOutputs);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPUBatchMatMul::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
auto input0 = inputs[0];
|
|
auto input1 = inputs[1];
|
|
auto output = outputs[0];
|
|
// Fill output by zero if one of inputs is empty.
|
|
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
|
|
::memset(output->host<float>(), 0, output->size());
|
|
return NO_ERROR;
|
|
}
|
|
const int dimensions = input0->dimensions();
|
|
MNN_ASSERT(dimensions >= 3);
|
|
const int input0Stride = input0->length(dimensions - 1) * input0->length(dimensions - 2);
|
|
const int input1Stride = input1->length(dimensions - 1) * input1->length(dimensions - 2);
|
|
const int outputStride = output->length(dimensions - 1) * output->length(dimensions - 2);
|
|
const auto input0Ptr = input0->host<float>();
|
|
const auto input1Ptr = input1->host<float>();
|
|
float* const outputPtr = output->host<float>();
|
|
int threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
|
|
if (threadNumber > mBatch) {
|
|
threadNumber = mBatch;
|
|
}
|
|
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
|
|
auto& unit = mUnits[tId];
|
|
for (int i = (int)tId; i < mBatch; i+=threadNumber) {
|
|
unit.mMatrixA->buffer().host = (uint8_t*)(input0Ptr + i * input0Stride);
|
|
unit.mMatrixB->buffer().host = (uint8_t*)(input1Ptr + i * input1Stride);
|
|
unit.mMatrixC->buffer().host = (uint8_t*)(outputPtr + i * outputStride);
|
|
unit.mMatMul->onExecute(unit.mTempInputs, unit.mTempOutputs);
|
|
}
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUBatchMatMulCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const override {
|
|
return new CPUBatchMatMul(backend, op->main_as_BatchMatMulParam()->adjX(), op->main_as_BatchMatMulParam()->adjY());
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUBatchMatMulCreator, OpType_BatchMatMul);
|
|
|
|
} // namespace MNN
|