MNN/source/backend/cpu/CPUBatchMatMul.cpp

123 lines
5.0 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUBatchMatMul.cpp
// MNN
//
// Created by MNN on 2019/03/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUBatchMatMul.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "math/Matrix.hpp"
2020-11-05 16:41:56 +08:00
#include "core/TensorUtils.hpp"
#include "core/BufferAllocator.hpp"
#include "core/Concurrency.h"
2019-04-17 10:49:11 +08:00
namespace MNN {
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
CPUBatchMatMul::CPUBatchMatMul(Backend* backend, bool adjX, bool adjY) : Execution(backend) {
2020-11-05 16:41:56 +08:00
auto threadNumber = static_cast<CPUBackend*>(backend)->threadNumber();
for (int i = 0; i < threadNumber; ++i) {
Unit unit;
unit.mMatrixA.reset(new Tensor);
unit.mMatrixB.reset(new Tensor);
unit.mMatrixC.reset(new Tensor);
unit.mMatMul.reset(new CPUMatMul(backend, adjX, adjY, false));
unit.mMatrixB->buffer().dimensions = 2;
unit.mMatrixA->buffer().dimensions = 2;
unit.mMatrixC->buffer().dimensions = 2;
unit.mTempInputs = {unit.mMatrixA.get(), unit.mMatrixB.get()};
unit.mTempOutputs = {unit.mMatrixC.get()};
mUnits.emplace_back(std::move(unit));
}
2019-04-17 10:49:11 +08:00
}
ErrorCode CPUBatchMatMul::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
2020-07-04 01:21:30 +08:00
// Fill output by zero if one of inputs is empty.
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
return NO_ERROR;
}
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto dimensions = input0->dimensions();
2020-11-05 16:41:56 +08:00
int threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
2019-04-17 10:49:11 +08:00
int batch = 1;
for (int i = 0; i < dimensions - 2; ++i) {
batch *= input0->length(i);
}
mBatch = batch;
2020-11-05 16:41:56 +08:00
if (threadNumber > batch) {
threadNumber = batch;
}
auto memoryPool = static_cast<CPUBackend*>(backend())->getBufferAllocator();
memoryPool->barrierBegin();
std::shared_ptr<void> __a(nullptr, [memoryPool](void *) { memoryPool->barrierEnd(); });
for (int i = 0; i < threadNumber; ++i) {
memoryPool->beginGroup();
std::shared_ptr<void> __b(nullptr, [memoryPool](void *) { memoryPool->endGroup(); });
auto& unit = mUnits[i];
unit.mMatrixA->setLength(0, input0->length(input0->dimensions()-2));
unit.mMatrixA->setLength(1, input0->length(input0->dimensions()-1));
unit.mMatrixB->setLength(0, input1->length(input1->dimensions()-2));
unit.mMatrixB->setLength(1, input1->length(input1->dimensions()-1));
unit.mMatrixC->setLength(0, output->length(output->dimensions()-2));
unit.mMatrixC->setLength(1, output->length(output->dimensions()-1));
TensorUtils::setLinearLayout(unit.mMatrixA.get());
TensorUtils::setLinearLayout(unit.mMatrixB.get());
TensorUtils::setLinearLayout(unit.mMatrixC.get());
auto code = unit.mMatMul->onResize(unit.mTempInputs, unit.mTempOutputs);
}
return NO_ERROR;
2019-04-17 10:49:11 +08:00
}
ErrorCode CPUBatchMatMul::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
2020-07-04 01:21:30 +08:00
// Fill output by zero if one of inputs is empty.
if (input0->elementSize() == 0 || input1->elementSize() == 0) {
::memset(output->host<float>(), 0, output->size());
return NO_ERROR;
}
2019-04-17 10:49:11 +08:00
const int dimensions = input0->dimensions();
MNN_ASSERT(dimensions >= 3);
2020-11-05 16:41:56 +08:00
const int input0Stride = input0->length(dimensions - 1) * input0->length(dimensions - 2);
const int input1Stride = input1->length(dimensions - 1) * input1->length(dimensions - 2);
const int outputStride = output->length(dimensions - 1) * output->length(dimensions - 2);
2019-04-17 10:49:11 +08:00
const auto input0Ptr = input0->host<float>();
const auto input1Ptr = input1->host<float>();
float* const outputPtr = output->host<float>();
2020-11-05 16:41:56 +08:00
int threadNumber = static_cast<CPUBackend*>(backend())->threadNumber();
if (threadNumber > mBatch) {
threadNumber = mBatch;
}
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
auto& unit = mUnits[tId];
for (int i = (int)tId; i < mBatch; i+=threadNumber) {
2020-12-15 14:12:35 +08:00
unit.mMatrixA->buffer().host = (uint8_t*)(input0Ptr + i * input0Stride);
unit.mMatrixB->buffer().host = (uint8_t*)(input1Ptr + i * input1Stride);
unit.mMatrixC->buffer().host = (uint8_t*)(outputPtr + i * outputStride);
2020-11-05 16:41:56 +08:00
unit.mMatMul->onExecute(unit.mTempInputs, unit.mTempOutputs);
}
2019-04-17 10:49:11 +08:00
}
2020-11-05 16:41:56 +08:00
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
class CPUBatchMatMulCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
return new CPUBatchMatMul(backend, op->main_as_BatchMatMulParam()->adjX(), op->main_as_BatchMatMulParam()->adjY());
2019-04-17 10:49:11 +08:00
}
};
REGISTER_CPU_OP_CREATOR(CPUBatchMatMulCreator, OpType_BatchMatMul);
} // namespace MNN