mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			96 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUQuantizedAvgPool.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/08/14.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| #ifdef MNN_SUPPORT_TFLITE_QUAN
 | |
| #include "backend/cpu/CPUQuantizedAvgPool.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "backend/cpu/CPUQuantizationUtils.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "core/Macro.h"
 | |
| #include "backend/cpu/compute/OptimizedComputer.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUQuantizedAvgPool::CPUQuantizedAvgPool(Backend *backend, const Op *CPUQuantizedAvgPoolOp) : Execution(backend) {
 | |
|     auto CPUQuantizedAvgPool = CPUQuantizedAvgPoolOp->main_as_QuantizedAvgPool();
 | |
|     mIstflite                = (CPUQuantizedAvgPool->modelFormat() == ModeFormat_TFLITE);
 | |
|     mKernelWidth             = CPUQuantizedAvgPool->kernelX();
 | |
|     mKernelHeight            = CPUQuantizedAvgPool->kernelY();
 | |
|     mPadWidth                = CPUQuantizedAvgPool->padX();
 | |
|     mPadHeight               = CPUQuantizedAvgPool->padY();
 | |
|     mStrideWidth             = CPUQuantizedAvgPool->strideX();
 | |
|     mStrideHeight            = CPUQuantizedAvgPool->strideY();
 | |
|     mPadMode                 = CPUQuantizedAvgPool->padType();
 | |
|     mOutputActivationMin     = CPUQuantizedAvgPool->outputActivationMin();
 | |
|     mOutputActivationMax     = CPUQuantizedAvgPool->outputActivationMax();
 | |
| }
 | |
| 
 | |
| 
 | |
| ErrorCode CPUQuantizedAvgPool::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
| 
 | |
|     auto input  = inputs[0];
 | |
|     auto output = outputs[0];
 | |
| 
 | |
|     MNN_ASSERT(input->buffer().dimensions == 4);
 | |
| 
 | |
|     int32_t inBatch   = input->buffer().dim[0].extent;
 | |
|     int32_t inRows    = input->buffer().dim[2].extent;
 | |
|     int32_t inCols    = input->buffer().dim[3].extent;
 | |
|     int32_t inChannel = input->buffer().dim[1].extent;
 | |
| 
 | |
|     const int32_t windowRows = mKernelHeight;
 | |
|     const int32_t windowCols = mKernelWidth;
 | |
|     const int32_t rowStride  = mStrideHeight;
 | |
|     const int32_t colStride  = mStrideWidth;
 | |
|     int32_t outHeight  = output->buffer().dim[2].extent;
 | |
|     int32_t outWidth   = output->buffer().dim[3].extent;
 | |
| 
 | |
|     switch (mPadMode) {
 | |
|         case PoolPadType_CAFFE:
 | |
|             MNN_ASSERT(false);
 | |
|             break;
 | |
|         case PoolPadType_VALID:
 | |
|             mPadHeight = mPadWidth = 0;
 | |
|             break;
 | |
|         case PoolPadType_SAME:
 | |
|             auto widthNeeded  = (outWidth - 1) * colStride + windowCols - inCols;
 | |
|             auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
 | |
|             mPadWidth         = widthNeeded > 0 ? widthNeeded / 2 : 0;
 | |
|             mPadHeight        = heightNeeded > 0 ? heightNeeded / 2 : 0;
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     mInputDims = {inBatch, inRows, inCols, inChannel};
 | |
|     mOutputDims = {output->batch(), output->height(), output->width(), output->channel()};
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| 
 | |
| ErrorCode CPUQuantizedAvgPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
| 
 | |
| 
 | |
|     uint8_t *inputPtr  = inputs[0]->host<uint8_t>();
 | |
|     uint8_t *outputPtr = outputs[0]->host<uint8_t>();
 | |
| 
 | |
|     Optimized::AveragePool(inputPtr, mInputDims, mStrideWidth, mStrideHeight, mPadWidth, mPadHeight, mKernelWidth,
 | |
|                                mKernelHeight, mOutputActivationMin, mOutputActivationMax, outputPtr, mOutputDims);
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUQuantizedAvgPoolCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const {
 | |
|         return new CPUQuantizedAvgPool(backend, op);
 | |
|     }
 | |
| };
 | |
| REGISTER_CPU_OP_CREATOR(CPUQuantizedAvgPoolCreator, OpType_QuantizedAvgPool);
 | |
| } // namespace MNN
 | |
| #endif
 |