| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  CPUQuantizedAvgPool.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2018/08/14.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  | #ifdef MNN_SUPPORT_TFLITE_QUAN
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUQuantizedAvgPool.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/CPUBackend.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/CPUQuantizationUtils.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/compute/CommonOptFunction.h"
 | 
					
						
							|  |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | #include "backend/cpu/compute/OptimizedComputer.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | CPUQuantizedAvgPool::CPUQuantizedAvgPool(Backend *backend, const Op *CPUQuantizedAvgPoolOp) : Execution(backend) { | 
					
						
							|  |  |  |     auto CPUQuantizedAvgPool = CPUQuantizedAvgPoolOp->main_as_QuantizedAvgPool(); | 
					
						
							|  |  |  |     mIstflite                = (CPUQuantizedAvgPool->modelFormat() == ModeFormat_TFLITE); | 
					
						
							|  |  |  |     mKernelWidth             = CPUQuantizedAvgPool->kernelX(); | 
					
						
							|  |  |  |     mKernelHeight            = CPUQuantizedAvgPool->kernelY(); | 
					
						
							|  |  |  |     mPadWidth                = CPUQuantizedAvgPool->padX(); | 
					
						
							|  |  |  |     mPadHeight               = CPUQuantizedAvgPool->padY(); | 
					
						
							|  |  |  |     mStrideWidth             = CPUQuantizedAvgPool->strideX(); | 
					
						
							|  |  |  |     mStrideHeight            = CPUQuantizedAvgPool->strideY(); | 
					
						
							|  |  |  |     mPadMode                 = CPUQuantizedAvgPool->padType(); | 
					
						
							|  |  |  |     mOutputActivationMin     = CPUQuantizedAvgPool->outputActivationMin(); | 
					
						
							|  |  |  |     mOutputActivationMax     = CPUQuantizedAvgPool->outputActivationMax(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  | ErrorCode CPUQuantizedAvgPool::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) { | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     auto input  = inputs[0]; | 
					
						
							|  |  |  |     auto output = outputs[0]; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     MNN_ASSERT(input->buffer().dimensions == 4); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     int32_t inBatch   = input->buffer().dim[0].extent; | 
					
						
							|  |  |  |     int32_t inRows    = input->buffer().dim[2].extent; | 
					
						
							|  |  |  |     int32_t inCols    = input->buffer().dim[3].extent; | 
					
						
							|  |  |  |     int32_t inChannel = input->buffer().dim[1].extent; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     const int32_t windowRows = mKernelHeight; | 
					
						
							|  |  |  |     const int32_t windowCols = mKernelWidth; | 
					
						
							|  |  |  |     const int32_t rowStride  = mStrideHeight; | 
					
						
							|  |  |  |     const int32_t colStride  = mStrideWidth; | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     int32_t outHeight  = output->buffer().dim[2].extent; | 
					
						
							|  |  |  |     int32_t outWidth   = output->buffer().dim[3].extent; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     switch (mPadMode) { | 
					
						
							|  |  |  |         case PoolPadType_CAFFE: | 
					
						
							|  |  |  |             MNN_ASSERT(false); | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |         case PoolPadType_VALID: | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |             mPadHeight = mPadWidth = 0; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             break; | 
					
						
							|  |  |  |         case PoolPadType_SAME: | 
					
						
							|  |  |  |             auto widthNeeded  = (outWidth - 1) * colStride + windowCols - inCols; | 
					
						
							|  |  |  |             auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows; | 
					
						
							|  |  |  |             mPadWidth         = widthNeeded > 0 ? widthNeeded / 2 : 0; | 
					
						
							|  |  |  |             mPadHeight        = heightNeeded > 0 ? heightNeeded / 2 : 0; | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     mInputDims = {inBatch, inRows, inCols, inChannel}; | 
					
						
							|  |  |  |     mOutputDims = {output->batch(), output->height(), output->width(), output->channel()}; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  | ErrorCode CPUQuantizedAvgPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     uint8_t *inputPtr  = inputs[0]->host<uint8_t>(); | 
					
						
							|  |  |  |     uint8_t *outputPtr = outputs[0]->host<uint8_t>(); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     Optimized::AveragePool(inputPtr, mInputDims, mStrideWidth, mStrideHeight, mPadWidth, mPadHeight, mKernelWidth, | 
					
						
							|  |  |  |                                mKernelHeight, mOutputActivationMin, mOutputActivationMax, outputPtr, mOutputDims); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CPUQuantizedAvgPoolCreator : public CPUBackend::Creator { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, | 
					
						
							|  |  |  |                                 const MNN::Op *op, Backend *backend) const { | 
					
						
							|  |  |  |         return new CPUQuantizedAvgPool(backend, op); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | REGISTER_CPU_OP_CREATOR(CPUQuantizedAvgPoolCreator, OpType_QuantizedAvgPool); | 
					
						
							|  |  |  | } // namespace MNN
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  | #endif
 |