mirror of https://github.com/alibaba/MNN.git
87 lines
3.2 KiB
C++
87 lines
3.2 KiB
C++
//
|
|
// ShapeShape.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
|
|
class ShapeSizeComputer : public SizeComputer {
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(1 <= inputs.size());
|
|
MNN_ASSERT(1 == outputs.size());
|
|
auto& ib = inputs[0]->buffer();
|
|
auto& ob = outputs[0]->buffer();
|
|
|
|
ob.dimensions = 1;
|
|
outputs[0]->setType(DataType_DT_INT32);
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = op->defaultDimentionFormat();
|
|
auto inputFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
if (inputFormat == MNN_DATA_FORMAT_NC4HW4 && op->defaultDimentionFormat() == MNN_DATA_FORMAT_NHWC) {
|
|
// For compability
|
|
ob.dim[0].extent = 4;
|
|
} else {
|
|
ob.dim[0].extent = ib.dimensions;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE(ShapeSizeComputer, OpType_Shape);
|
|
|
|
class ShapeRasterComputer : public SizeComputer {
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(1 == outputs.size());
|
|
auto extra = op->main_as_Extra();
|
|
if (!extra) {
|
|
// copy dims
|
|
MNN_ASSERT(1 <= inputs.size());
|
|
outputs[0]->buffer().type = inputs[0]->buffer().type;
|
|
TensorUtils::copyShape(inputs[0], outputs[0], true);
|
|
} else {
|
|
if (inputs.size() > 0) {
|
|
outputs[0]->buffer().type = inputs[0]->buffer().type;
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
}
|
|
for (int i = 0; i < extra->attr()->size(); i++) {
|
|
auto attr = extra->attr()->Get(i);
|
|
if (attr->key()->str() == "shape") {
|
|
outputs[0]->buffer().dimensions = 0;
|
|
if (attr->list()->i() != nullptr) {
|
|
int len = attr->list()->i()->size();
|
|
outputs[0]->buffer().dimensions = len;
|
|
for (int j = 0; j < len; j++) {
|
|
outputs[0]->setLength(j, attr->list()->i()->Get(j));
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
if (attr->key()->str() == "code") {
|
|
outputs[0]->buffer().type.code = (halide_type_code_t)attr->i();
|
|
continue;
|
|
}
|
|
if (attr->key()->str() == "bits") {
|
|
outputs[0]->buffer().type.bits = attr->i();
|
|
continue;
|
|
}
|
|
if (attr->key()->str() == "format") {
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = (MNN_DATA_FORMAT)attr->i();
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE(ShapeRasterComputer, OpType_Raster);
|
|
} // namespace MNN
|