2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeShape.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2020-11-05 16:41:56 +08:00
|
|
|
#include "shape/SizeComputer.hpp"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "core/TensorUtils.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
class ShapeSizeComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
MNN_ASSERT(1 <= inputs.size());
|
2019-04-17 10:49:11 +08:00
|
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
auto& ib = inputs[0]->buffer();
|
|
|
|
auto& ob = outputs[0]->buffer();
|
2020-07-04 01:21:30 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
ob.dimensions = 1;
|
|
|
|
outputs[0]->setType(DataType_DT_INT32);
|
2019-09-01 19:25:26 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = op->defaultDimentionFormat();
|
2020-03-22 20:16:29 +08:00
|
|
|
auto inputFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
2020-11-05 16:41:56 +08:00
|
|
|
if (inputFormat == MNN_DATA_FORMAT_NC4HW4 && op->defaultDimentionFormat() == MNN_DATA_FORMAT_NHWC) {
|
|
|
|
// For compability
|
2019-07-19 17:09:09 +08:00
|
|
|
ob.dim[0].extent = 4;
|
|
|
|
} else {
|
|
|
|
ob.dim[0].extent = ib.dimensions;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(ShapeSizeComputer, OpType_Shape);
|
2022-02-18 11:30:27 +08:00
|
|
|
|
|
|
|
class ShapeRasterComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
auto extra = op->main_as_Extra();
|
|
|
|
if (!extra) {
|
|
|
|
// copy dims
|
2022-12-30 15:18:58 +08:00
|
|
|
MNN_ASSERT(1 <= inputs.size());
|
|
|
|
outputs[0]->buffer().type = inputs[0]->buffer().type;
|
2022-02-18 11:30:27 +08:00
|
|
|
TensorUtils::copyShape(inputs[0], outputs[0], true);
|
|
|
|
} else {
|
2022-12-30 15:18:58 +08:00
|
|
|
if (inputs.size() > 0) {
|
|
|
|
outputs[0]->buffer().type = inputs[0]->buffer().type;
|
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
|
|
}
|
2022-02-18 11:30:27 +08:00
|
|
|
for (int i = 0; i < extra->attr()->size(); i++) {
|
|
|
|
auto attr = extra->attr()->Get(i);
|
|
|
|
if (attr->key()->str() == "shape") {
|
2022-12-30 15:18:58 +08:00
|
|
|
outputs[0]->buffer().dimensions = 0;
|
|
|
|
if (attr->list()->i() != nullptr) {
|
|
|
|
int len = attr->list()->i()->size();
|
|
|
|
outputs[0]->buffer().dimensions = len;
|
|
|
|
for (int j = 0; j < len; j++) {
|
|
|
|
outputs[0]->setLength(j, attr->list()->i()->Get(j));
|
|
|
|
}
|
2022-02-18 11:30:27 +08:00
|
|
|
}
|
2022-12-30 15:18:58 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (attr->key()->str() == "code") {
|
|
|
|
outputs[0]->buffer().type.code = (halide_type_code_t)attr->i();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (attr->key()->str() == "bits") {
|
|
|
|
outputs[0]->buffer().type.bits = attr->i();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (attr->key()->str() == "format") {
|
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = (MNN_DATA_FORMAT)attr->i();
|
|
|
|
continue;
|
2022-02-18 11:30:27 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(ShapeRasterComputer, OpType_Raster);
|
2019-04-17 10:49:11 +08:00
|
|
|
} // namespace MNN
|