MNN/source/shape/ShapeShape.cpp

87 lines
3.2 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeShape.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-11-05 16:41:56 +08:00
#include "shape/SizeComputer.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class ShapeSizeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
MNN_ASSERT(1 <= inputs.size());
2019-04-17 10:49:11 +08:00
MNN_ASSERT(1 == outputs.size());
auto& ib = inputs[0]->buffer();
auto& ob = outputs[0]->buffer();
2020-07-04 01:21:30 +08:00
2019-04-17 10:49:11 +08:00
ob.dimensions = 1;
outputs[0]->setType(DataType_DT_INT32);
TensorUtils::getDescribe(outputs[0])->dimensionFormat = op->defaultDimentionFormat();
auto inputFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2020-11-05 16:41:56 +08:00
if (inputFormat == MNN_DATA_FORMAT_NC4HW4 && op->defaultDimentionFormat() == MNN_DATA_FORMAT_NHWC) {
// For compability
ob.dim[0].extent = 4;
} else {
ob.dim[0].extent = ib.dimensions;
}
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(ShapeSizeComputer, OpType_Shape);
2022-02-18 11:30:27 +08:00
class ShapeRasterComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == outputs.size());
auto extra = op->main_as_Extra();
if (!extra) {
// copy dims
2022-12-30 15:18:58 +08:00
MNN_ASSERT(1 <= inputs.size());
outputs[0]->buffer().type = inputs[0]->buffer().type;
2022-02-18 11:30:27 +08:00
TensorUtils::copyShape(inputs[0], outputs[0], true);
} else {
2022-12-30 15:18:58 +08:00
if (inputs.size() > 0) {
outputs[0]->buffer().type = inputs[0]->buffer().type;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
}
2022-02-18 11:30:27 +08:00
for (int i = 0; i < extra->attr()->size(); i++) {
auto attr = extra->attr()->Get(i);
if (attr->key()->str() == "shape") {
2022-12-30 15:18:58 +08:00
outputs[0]->buffer().dimensions = 0;
if (attr->list()->i() != nullptr) {
int len = attr->list()->i()->size();
outputs[0]->buffer().dimensions = len;
for (int j = 0; j < len; j++) {
outputs[0]->setLength(j, attr->list()->i()->Get(j));
}
2022-02-18 11:30:27 +08:00
}
2022-12-30 15:18:58 +08:00
continue;
}
if (attr->key()->str() == "code") {
outputs[0]->buffer().type.code = (halide_type_code_t)attr->i();
continue;
}
if (attr->key()->str() == "bits") {
outputs[0]->buffer().type.bits = attr->i();
continue;
}
if (attr->key()->str() == "format") {
TensorUtils::getDescribe(outputs[0])->dimensionFormat = (MNN_DATA_FORMAT)attr->i();
continue;
2022-02-18 11:30:27 +08:00
}
}
}
return true;
}
};
REGISTER_SHAPE(ShapeRasterComputer, OpType_Raster);
2019-04-17 10:49:11 +08:00
} // namespace MNN