SLA-RedM/api/api.py

159 lines
4.3 KiB
Python
Raw Normal View History

2025-10-05 03:21:27 +08:00
"""
FastAPI application for Red Mountain Intelligent Development Assistant
"""
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List
import logging
logger = logging.getLogger(__name__)
# Create FastAPI app
app = FastAPI(
title="Red Mountain Dev Assistant API",
description="智能开发助手 API - 提供智能问答、代码分析等功能",
version="0.1.0"
)
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, replace with specific origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ==================== Data Models ====================
class ChatRequest(BaseModel):
"""Chat request model"""
message: str
conversation_id: Optional[str] = None
class ChatResponse(BaseModel):
"""Chat response model"""
response: str
conversation_id: str
class RepoAnalysisRequest(BaseModel):
"""Repository analysis request model"""
repo_url: str
repo_type: str = "github" # github, gitlab, bitbucket
access_token: Optional[str] = None
included_dirs: Optional[List[str]] = None
excluded_dirs: Optional[List[str]] = None
class RepoAnalysisResponse(BaseModel):
"""Repository analysis response model"""
status: str
message: str
analysis_id: Optional[str] = None
# ==================== API Endpoints ====================
@app.get("/")
async def root():
"""Root endpoint"""
return {
"name": "Red Mountain Dev Assistant API",
"version": "0.1.0",
"status": "running"
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy"}
@app.post("/api/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""
Chat endpoint for intelligent Q&A
智能问答接口
"""
try:
# TODO: Implement actual chat logic with LLM
# This is a placeholder response
logger.info(f"Received chat message: {request.message}")
response_text = (
f"你好!我收到了你的消息:\"{request.message}\"\n\n"
"这是一个占位响应。要启用真实的 AI 对话功能,请:\n"
"1. 配置 .env 文件中的 API 密钥\n"
"2. 实现 RAG 和 LLM 集成逻辑\n"
"3. 参考 DeepWiki 的 rag.py 实现"
)
return ChatResponse(
response=response_text,
conversation_id=request.conversation_id or "demo-conversation-id"
)
except Exception as e:
logger.error(f"Error in chat endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/repo/analyze", response_model=RepoAnalysisResponse)
async def analyze_repository(request: RepoAnalysisRequest):
"""
Repository analysis endpoint
代码仓库分析接口
"""
try:
logger.info(f"Analyzing repository: {request.repo_url}")
# TODO: Implement actual repository analysis logic
# Reference DeepWiki's data_pipeline.py for implementation
return RepoAnalysisResponse(
status="pending",
message="Repository analysis started. This feature is under development.",
analysis_id="demo-analysis-id"
)
except Exception as e:
logger.error(f"Error in repository analysis: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/repo/status/{analysis_id}")
async def get_analysis_status(analysis_id: str):
"""
Get repository analysis status
获取分析状态
"""
# TODO: Implement status tracking
return {
"analysis_id": analysis_id,
"status": "processing",
"progress": 0
}
# ==================== Quality Analysis Endpoints (Placeholder) ====================
@app.post("/api/quality/analyze")
async def analyze_quality(request: RepoAnalysisRequest):
"""
Code quality analysis endpoint (to be implemented)
代码质量分析接口待实现
"""
return {
"status": "not_implemented",
"message": "Quality analysis feature is planned for future development"
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8001)