SLA-RedM/api/api.py

159 lines
4.3 KiB
Python

"""
FastAPI application for Red Mountain Intelligent Development Assistant
"""
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List
import logging
logger = logging.getLogger(__name__)
# Create FastAPI app
app = FastAPI(
title="Red Mountain Dev Assistant API",
description="智能开发助手 API - 提供智能问答、代码分析等功能",
version="0.1.0"
)
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, replace with specific origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ==================== Data Models ====================
class ChatRequest(BaseModel):
"""Chat request model"""
message: str
conversation_id: Optional[str] = None
class ChatResponse(BaseModel):
"""Chat response model"""
response: str
conversation_id: str
class RepoAnalysisRequest(BaseModel):
"""Repository analysis request model"""
repo_url: str
repo_type: str = "github" # github, gitlab, bitbucket
access_token: Optional[str] = None
included_dirs: Optional[List[str]] = None
excluded_dirs: Optional[List[str]] = None
class RepoAnalysisResponse(BaseModel):
"""Repository analysis response model"""
status: str
message: str
analysis_id: Optional[str] = None
# ==================== API Endpoints ====================
@app.get("/")
async def root():
"""Root endpoint"""
return {
"name": "Red Mountain Dev Assistant API",
"version": "0.1.0",
"status": "running"
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy"}
@app.post("/api/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""
Chat endpoint for intelligent Q&A
智能问答接口
"""
try:
# TODO: Implement actual chat logic with LLM
# This is a placeholder response
logger.info(f"Received chat message: {request.message}")
response_text = (
f"你好!我收到了你的消息:\"{request.message}\"\n\n"
"这是一个占位响应。要启用真实的 AI 对话功能,请:\n"
"1. 配置 .env 文件中的 API 密钥\n"
"2. 实现 RAG 和 LLM 集成逻辑\n"
"3. 参考 DeepWiki 的 rag.py 实现"
)
return ChatResponse(
response=response_text,
conversation_id=request.conversation_id or "demo-conversation-id"
)
except Exception as e:
logger.error(f"Error in chat endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/repo/analyze", response_model=RepoAnalysisResponse)
async def analyze_repository(request: RepoAnalysisRequest):
"""
Repository analysis endpoint
代码仓库分析接口
"""
try:
logger.info(f"Analyzing repository: {request.repo_url}")
# TODO: Implement actual repository analysis logic
# Reference DeepWiki's data_pipeline.py for implementation
return RepoAnalysisResponse(
status="pending",
message="Repository analysis started. This feature is under development.",
analysis_id="demo-analysis-id"
)
except Exception as e:
logger.error(f"Error in repository analysis: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/repo/status/{analysis_id}")
async def get_analysis_status(analysis_id: str):
"""
Get repository analysis status
获取分析状态
"""
# TODO: Implement status tracking
return {
"analysis_id": analysis_id,
"status": "processing",
"progress": 0
}
# ==================== Quality Analysis Endpoints (Placeholder) ====================
@app.post("/api/quality/analyze")
async def analyze_quality(request: RepoAnalysisRequest):
"""
Code quality analysis endpoint (to be implemented)
代码质量分析接口(待实现)
"""
return {
"status": "not_implemented",
"message": "Quality analysis feature is planned for future development"
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8001)