XiangShan/src/main/scala/xiangshan/mem/sbuffer/Sbuffer.scala

1093 lines
47 KiB
Scala

/***************************************************************************************
* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
* Copyright (c) 2020-2021 Peng Cheng Laboratory
*
* XiangShan is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
*
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
*
* See the Mulan PSL v2 for more details.
***************************************************************************************/
package xiangshan.mem
import org.chipsalliance.cde.config.Parameters
import chisel3._
import chisel3.util._
import freechips.rocketchip.util._
import utils._
import utility._
import xiangshan._
import xiangshan.backend.Bundles.DynInst
import xiangshan.backend.fu.FuType._
import xiangshan.mem.Bundles._
import xiangshan.cache._
import difftest._
class SbufferFlushBundle extends Bundle {
val valid = Output(Bool())
val empty = Input(Bool())
}
trait HasSbufferConst extends HasXSParameter {
val EvictCycles = 1 << 20
val SbufferReplayDelayCycles = 16
require(isPow2(EvictCycles))
val EvictCountBits = log2Up(EvictCycles+1)
val MissqReplayCountBits = log2Up(SbufferReplayDelayCycles) + 1
// dcache write hit resp has 2 sources
// refill pipe resp and main pipe resp (fixed:only main pipe resp)
// val NumDcacheWriteResp = 2 // hardcoded
val NumDcacheWriteResp = 1 // hardcoded
val SbufferIndexWidth: Int = log2Up(StoreBufferSize)
// paddr = ptag + offset
val CacheLineBytes: Int = CacheLineSize / 8
val CacheLineWords: Int = CacheLineBytes / DataBytes
val OffsetWidth: Int = log2Up(CacheLineBytes)
val WordsWidth: Int = log2Up(CacheLineWords)
val PTagWidth: Int = PAddrBits - OffsetWidth
val VTagWidth: Int = VAddrBits - OffsetWidth
val WordOffsetWidth: Int = PAddrBits - WordsWidth
val CacheLineVWords: Int = CacheLineBytes / VDataBytes
val VWordsWidth: Int = log2Up(CacheLineVWords)
val VWordWidth: Int = log2Up(VDataBytes)
val VWordOffsetWidth: Int = PAddrBits - VWordWidth
}
class SbufferEntryState (implicit p: Parameters) extends SbufferBundle {
val state_valid = Bool() // this entry is active
val state_inflight = Bool() // sbuffer is trying to write this entry to dcache
val w_timeout = Bool() // with timeout resp, waiting for resend store pipeline req timeout
val w_sameblock_inflight = Bool() // same cache block dcache req is inflight
def isInvalid(): Bool = !state_valid
def isValid(): Bool = state_valid
def isActive(): Bool = state_valid && !state_inflight
def isInflight(): Bool = state_inflight
def isDcacheReqCandidate(): Bool = state_valid && !state_inflight && !w_sameblock_inflight
}
class SbufferBundle(implicit p: Parameters) extends XSBundle with HasSbufferConst
class DataWriteReq(implicit p: Parameters) extends SbufferBundle {
// univerisal writemask
val wvec = UInt(StoreBufferSize.W)
// 2 cycle update
val mask = UInt((VLEN/8).W)
val data = UInt(VLEN.W)
val vwordOffset = UInt(VWordOffsetWidth.W)
val wline = Bool() // write full cacheline
}
class MaskFlushReq(implicit p: Parameters) extends SbufferBundle {
// univerisal writemask
val wvec = UInt(StoreBufferSize.W)
}
class SbufferData(implicit p: Parameters) extends XSModule with HasSbufferConst {
val io = IO(new Bundle(){
// update data and mask when alloc or merge
val writeReq = Vec(EnsbufferWidth, Flipped(ValidIO(new DataWriteReq)))
// clean mask when deq
val maskFlushReq = Vec(NumDcacheWriteResp, Flipped(ValidIO(new MaskFlushReq)))
val dataOut = Output(Vec(StoreBufferSize, Vec(CacheLineVWords, Vec(VDataBytes, UInt(8.W)))))
val maskOut = Output(Vec(StoreBufferSize, Vec(CacheLineVWords, Vec(VDataBytes, Bool()))))
})
val data = Reg(Vec(StoreBufferSize, Vec(CacheLineVWords, Vec(VDataBytes, UInt(8.W)))))
// val mask = Reg(Vec(StoreBufferSize, Vec(CacheLineWords, Vec(DataBytes, Bool()))))
val mask = RegInit(
VecInit(Seq.fill(StoreBufferSize)(
VecInit(Seq.fill(CacheLineVWords)(
VecInit(Seq.fill(VDataBytes)(false.B))
))
))
)
// 2 cycle line mask clean
for(line <- 0 until StoreBufferSize){
val line_mask_clean_flag = GatedValidRegNext(
io.maskFlushReq.map(a => a.valid && a.bits.wvec(line)).reduce(_ || _)
)
line_mask_clean_flag.suggestName("line_mask_clean_flag_"+line)
when(line_mask_clean_flag){
for(word <- 0 until CacheLineVWords){
for(byte <- 0 until VDataBytes){
mask(line)(word)(byte) := false.B
}
}
}
}
// 2 cycle data / mask update
for(i <- 0 until EnsbufferWidth) {
val req = io.writeReq(i)
for(line <- 0 until StoreBufferSize){
val sbuffer_in_s1_line_wen = req.valid && req.bits.wvec(line)
val sbuffer_in_s2_line_wen = GatedValidRegNext(sbuffer_in_s1_line_wen)
val line_write_buffer_data = RegEnable(req.bits.data, sbuffer_in_s1_line_wen)
val line_write_buffer_wline = RegEnable(req.bits.wline, sbuffer_in_s1_line_wen)
val line_write_buffer_mask = RegEnable(req.bits.mask, sbuffer_in_s1_line_wen)
val line_write_buffer_offset = RegEnable(req.bits.vwordOffset(VWordsWidth-1, 0), sbuffer_in_s1_line_wen)
sbuffer_in_s1_line_wen.suggestName("sbuffer_in_s1_line_wen_"+line)
sbuffer_in_s2_line_wen.suggestName("sbuffer_in_s2_line_wen_"+line)
line_write_buffer_data.suggestName("line_write_buffer_data_"+line)
line_write_buffer_wline.suggestName("line_write_buffer_wline_"+line)
line_write_buffer_mask.suggestName("line_write_buffer_mask_"+line)
line_write_buffer_offset.suggestName("line_write_buffer_offset_"+line)
for(word <- 0 until CacheLineVWords){
for(byte <- 0 until VDataBytes){
val write_byte = sbuffer_in_s2_line_wen && (
line_write_buffer_mask(byte) && (line_write_buffer_offset === word.U) ||
line_write_buffer_wline
)
when(write_byte){
data(line)(word)(byte) := line_write_buffer_data(byte*8+7, byte*8)
mask(line)(word)(byte) := true.B
}
}
}
}
}
// 1 cycle line mask clean
// for(i <- 0 until EnsbufferWidth) {
// val req = io.writeReq(i)
// when(req.valid){
// for(line <- 0 until StoreBufferSize){
// when(
// req.bits.wvec(line) &&
// req.bits.cleanMask
// ){
// for(word <- 0 until CacheLineWords){
// for(byte <- 0 until DataBytes){
// mask(line)(word)(byte) := false.B
// val debug_last_cycle_write_byte = RegNext(req.valid && req.bits.wvec(line) && (
// req.bits.mask(byte) && (req.bits.wordOffset(WordsWidth-1, 0) === word.U) ||
// req.bits.wline
// ))
// assert(!debug_last_cycle_write_byte)
// }
// }
// }
// }
// }
// }
io.dataOut := data
io.maskOut := mask
}
class Sbuffer(implicit p: Parameters)
extends DCacheModule
with HasSbufferConst
with HasPerfEvents {
val io = IO(new Bundle() {
val hartId = Input(UInt(hartIdLen.W))
val in = Vec(EnsbufferWidth, Flipped(Decoupled(new DCacheWordReqWithVaddrAndPfFlag))) //Todo: store logic only support Width == 2 now
val vecDifftestInfo = Vec(EnsbufferWidth, Flipped(Decoupled(new ToSbufferDifftestInfoBundle)))
val dcache = Flipped(new DCacheToSbufferIO)
val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO))
val sqempty = Input(Bool())
val sbempty = Output(Bool())
val flush = Flipped(new SbufferFlushBundle)
val csrCtrl = Flipped(new CustomCSRCtrlIO)
val store_prefetch = Vec(StorePipelineWidth, DecoupledIO(new StorePrefetchReq)) // to dcache
val memSetPattenDetected = Input(Bool())
val force_write = Input(Bool())
val generateToSQ = Output(new GenerateInfoFromSBuffer)
})
val dataModule = Module(new SbufferData)
dataModule.io.writeReq <> DontCare
val prefetcher = Module(new StorePfWrapper())
val writeReq = dataModule.io.writeReq
val ptag = Reg(Vec(StoreBufferSize, UInt(PTagWidth.W)))
val vtag = Reg(Vec(StoreBufferSize, UInt(VTagWidth.W)))
val debug_mask = Reg(Vec(StoreBufferSize, Vec(CacheLineWords, Vec(DataBytes, Bool()))))
val waitInflightMask = Reg(Vec(StoreBufferSize, UInt(StoreBufferSize.W)))
val data = dataModule.io.dataOut
val mask = dataModule.io.maskOut
val stateVec = RegInit(VecInit(Seq.fill(StoreBufferSize)(0.U.asTypeOf(new SbufferEntryState))))
val cohCount = RegInit(VecInit(Seq.fill(StoreBufferSize)(0.U(EvictCountBits.W))))
val missqReplayCount = RegInit(VecInit(Seq.fill(StoreBufferSize)(0.U(MissqReplayCountBits.W))))
val sbuffer_out_s0_fire = Wire(Bool())
/*
idle --[flush] --> drain --[buf empty]--> idle
--[buf full]--> replace --[dcache resp]--> idle
*/
// x_drain_all: drain store queue and sbuffer
// x_drain_sbuffer: drain sbuffer only, block store queue to sbuffer write
val x_idle :: x_replace :: x_drain_all :: x_drain_sbuffer :: Nil = Enum(4)
def needDrain(state: UInt): Bool =
state(1)
val sbuffer_state = RegInit(x_idle)
// ---------------------- Store Enq Sbuffer ---------------------
def getPTag(pa: UInt): UInt =
pa(PAddrBits - 1, PAddrBits - PTagWidth)
def getVTag(va: UInt): UInt =
va(VAddrBits - 1, VAddrBits - VTagWidth)
def getWord(pa: UInt): UInt =
pa(PAddrBits-1, 3)
def getVWord(pa: UInt): UInt =
pa(PAddrBits-1, 4)
def getWordOffset(pa: UInt): UInt =
pa(OffsetWidth-1, 3)
def getVWordOffset(pa: UInt): UInt =
pa(OffsetWidth-1, 4)
def getAddr(ptag: UInt): UInt =
Cat(ptag, 0.U((PAddrBits - PTagWidth).W))
def getByteOffset(offect: UInt): UInt =
Cat(offect(OffsetWidth - 1, 3), 0.U(3.W))
def isOneOf(key: UInt, seq: Seq[UInt]): Bool =
if(seq.isEmpty) false.B else Cat(seq.map(_===key)).orR
def widthMap[T <: Data](f: Int => T) = (0 until StoreBufferSize) map f
// sbuffer entry count
val plru = new ValidPseudoLRU(StoreBufferSize)
val accessIdx = Wire(Vec(EnsbufferWidth + 1, Valid(UInt(SbufferIndexWidth.W))))
val candidateVec = VecInit(stateVec.map(s => s.isDcacheReqCandidate()))
val replaceAlgoIdx = plru.way(candidateVec.reverse)._2
val replaceAlgoNotDcacheCandidate = !stateVec(replaceAlgoIdx).isDcacheReqCandidate()
assert(!(candidateVec.asUInt.orR && replaceAlgoNotDcacheCandidate), "we have way to select, but replace algo selects invalid way")
val replaceIdx = replaceAlgoIdx
plru.access(accessIdx)
//-------------------------cohCount-----------------------------
// insert and merge: cohCount=0
// every cycle cohCount+=1
// if cohCount(EvictCountBits-1)==1, evict
val cohTimeOutMask = VecInit(widthMap(i => cohCount(i)(EvictCountBits - 1) && stateVec(i).isActive()))
val (cohTimeOutIdx, cohHasTimeOut) = PriorityEncoderWithFlag(cohTimeOutMask)
val cohTimeOutOH = PriorityEncoderOH(cohTimeOutMask)
val missqReplayTimeOutMask = VecInit(widthMap(i => missqReplayCount(i)(MissqReplayCountBits - 1) && stateVec(i).w_timeout))
val (missqReplayTimeOutIdxGen, missqReplayHasTimeOutGen) = PriorityEncoderWithFlag(missqReplayTimeOutMask)
val missqReplayHasTimeOut = GatedValidRegNext(missqReplayHasTimeOutGen) && !GatedValidRegNext(sbuffer_out_s0_fire)
val missqReplayTimeOutIdx = RegEnable(missqReplayTimeOutIdxGen, missqReplayHasTimeOutGen)
//-------------------------sbuffer enqueue-----------------------------
// Now sbuffer enq logic is divided into 3 stages:
// sbuffer_in_s0:
// * read data and meta from store queue
// * store them in 2 entry fifo queue
// sbuffer_in_s1:
// * read data and meta from fifo queue
// * update sbuffer meta (vtag, ptag, flag)
// * prevent that line from being sent to dcache (add a block condition)
// * prepare cacheline level write enable signal, RegNext() data and mask
// sbuffer_in_s2:
// * use cacheline level buffer to update sbuffer data and mask
// * remove dcache write block (if there is)
val activeMask = VecInit(stateVec.map(s => s.isActive()))
val validMask = VecInit(stateVec.map(s => s.isValid()))
val drainIdx = PriorityEncoder(activeMask)
val inflightMask = VecInit(stateVec.map(s => s.isInflight()))
val inptags = io.in.map(in => getPTag(in.bits.addr))
val invtags = io.in.map(in => getVTag(in.bits.vaddr))
val sameTag = inptags(0) === inptags(1) && io.in(0).valid && io.in(1).valid && io.in(0).bits.vecValid && io.in(1).bits.vecValid
val firstWord = getVWord(io.in(0).bits.addr)
val secondWord = getVWord(io.in(1).bits.addr)
// merge condition
val mergeMask = Wire(Vec(EnsbufferWidth, Vec(StoreBufferSize, Bool())))
val mergeIdx = mergeMask.map(PriorityEncoder(_)) // avoid using mergeIdx for better timing
val canMerge = mergeMask.map(ParallelOR(_))
val mergeVec = mergeMask.map(_.asUInt)
for(i <- 0 until EnsbufferWidth){
mergeMask(i) := widthMap(j =>
inptags(i) === ptag(j) && activeMask(j)
)
assert(!(PopCount(mergeMask(i).asUInt) > 1.U && io.in(i).fire && io.in(i).bits.vecValid))
}
// insert condition
// firstInsert: the first invalid entry
// if first entry canMerge or second entry has the same ptag with the first entry,
// secondInsert equal the first invalid entry, otherwise, the second invalid entry
val invalidMask = VecInit(stateVec.map(s => s.isInvalid()))
val evenInvalidMask = GetEvenBits(invalidMask.asUInt)
val oddInvalidMask = GetOddBits(invalidMask.asUInt)
def getFirstOneOH(input: UInt): UInt = {
assert(input.getWidth > 1)
val output = WireInit(VecInit(input.asBools))
(1 until input.getWidth).map(i => {
output(i) := !input(i - 1, 0).orR && input(i)
})
output.asUInt
}
val evenRawInsertVec = getFirstOneOH(evenInvalidMask)
val oddRawInsertVec = getFirstOneOH(oddInvalidMask)
val (evenRawInsertIdx, evenCanInsert) = PriorityEncoderWithFlag(evenInvalidMask)
val (oddRawInsertIdx, oddCanInsert) = PriorityEncoderWithFlag(oddInvalidMask)
val evenInsertIdx = Cat(evenRawInsertIdx, 0.U(1.W)) // slow to generate, for debug only
val oddInsertIdx = Cat(oddRawInsertIdx, 1.U(1.W)) // slow to generate, for debug only
val evenInsertVec = GetEvenBits.reverse(evenRawInsertVec)
val oddInsertVec = GetOddBits.reverse(oddRawInsertVec)
val enbufferSelReg = RegInit(false.B)
when(io.in(0).valid) {
enbufferSelReg := ~enbufferSelReg
}
val firstInsertIdx = Mux(enbufferSelReg, evenInsertIdx, oddInsertIdx) // slow to generate, for debug only
val secondInsertIdx = Mux(sameTag,
firstInsertIdx,
Mux(~enbufferSelReg, evenInsertIdx, oddInsertIdx)
) // slow to generate, for debug only
val firstInsertVec = Mux(enbufferSelReg, evenInsertVec, oddInsertVec)
val secondInsertVec = Mux(sameTag,
firstInsertVec,
Mux(~enbufferSelReg, evenInsertVec, oddInsertVec)
) // slow to generate, for debug only
val firstCanInsert = sbuffer_state =/= x_drain_sbuffer && Mux(enbufferSelReg, evenCanInsert, oddCanInsert)
val secondCanInsert = sbuffer_state =/= x_drain_sbuffer && Mux(sameTag,
firstCanInsert,
Mux(~enbufferSelReg, evenCanInsert, oddCanInsert)
) && (EnsbufferWidth >= 1).B
val forward_need_uarch_drain = WireInit(false.B)
val merge_need_uarch_drain = WireInit(false.B)
val do_uarch_drain = GatedValidRegNext(forward_need_uarch_drain) || GatedValidRegNext(GatedValidRegNext(merge_need_uarch_drain))
XSPerfAccumulate("do_uarch_drain", do_uarch_drain)
io.in(0).ready := firstCanInsert
io.in(1).ready := secondCanInsert && io.in(0).ready
for (i <- 0 until EnsbufferWidth) {
// train
if (EnableStorePrefetchSPB) {
prefetcher.io.sbuffer_enq(i).valid := io.in(i).fire && io.in(i).bits.vecValid
prefetcher.io.sbuffer_enq(i).bits := DontCare
prefetcher.io.sbuffer_enq(i).bits.vaddr := io.in(i).bits.vaddr
} else {
prefetcher.io.sbuffer_enq(i).valid := false.B
prefetcher.io.sbuffer_enq(i).bits := DontCare
}
// prefetch req
if (EnableStorePrefetchAtCommit) {
if (EnableAtCommitMissTrigger) {
io.store_prefetch(i).valid := prefetcher.io.prefetch_req(i).valid || (io.in(i).fire && io.in(i).bits.vecValid && io.in(i).bits.prefetch)
} else {
io.store_prefetch(i).valid := prefetcher.io.prefetch_req(i).valid || (io.in(i).fire && io.in(i).bits.vecValid)
}
io.store_prefetch(i).bits.paddr := DontCare
io.store_prefetch(i).bits.vaddr := Mux(prefetcher.io.prefetch_req(i).valid, prefetcher.io.prefetch_req(i).bits.vaddr, io.in(i).bits.vaddr)
prefetcher.io.prefetch_req(i).ready := io.store_prefetch(i).ready
} else {
io.store_prefetch(i) <> prefetcher.io.prefetch_req(i)
}
io.store_prefetch zip prefetcher.io.prefetch_req drop 2 foreach (x => x._1 <> x._2)
}
prefetcher.io.memSetPattenDetected := io.memSetPattenDetected
def wordReqToBufLine( // allocate a new line in sbuffer
req: DCacheWordReq,
reqptag: UInt,
reqvtag: UInt,
insertIdx: UInt,
insertVec: UInt,
wordOffset: UInt
): Unit = {
assert(UIntToOH(insertIdx) === insertVec)
val sameBlockInflightMask = genSameBlockInflightMask(reqptag)
(0 until StoreBufferSize).map(entryIdx => {
when(insertVec(entryIdx)){
stateVec(entryIdx).state_valid := true.B
stateVec(entryIdx).w_sameblock_inflight := sameBlockInflightMask.orR // set w_sameblock_inflight when a line is first allocated
when(sameBlockInflightMask.orR){
waitInflightMask(entryIdx) := sameBlockInflightMask
}
cohCount(entryIdx) := 0.U
// missqReplayCount(insertIdx) := 0.U
ptag(entryIdx) := reqptag
vtag(entryIdx) := reqvtag // update vtag if a new sbuffer line is allocated
}
})
}
def mergeWordReq( // merge write req into an existing line
req: DCacheWordReq,
reqptag: UInt,
reqvtag: UInt,
mergeIdx: UInt,
mergeVec: UInt,
wordOffset: UInt
): Unit = {
assert(UIntToOH(mergeIdx) === mergeVec)
(0 until StoreBufferSize).map(entryIdx => {
when(mergeVec(entryIdx)) {
cohCount(entryIdx) := 0.U
// missqReplayCount(entryIdx) := 0.U
// check if vtag is the same, if not, trigger sbuffer flush
when(reqvtag =/= vtag(entryIdx)) {
merge_need_uarch_drain := true.B
}
}
})
}
for(((in, vwordOffset), i) <- io.in.zip(Seq(firstWord, secondWord)).zipWithIndex){
writeReq(i).valid := in.fire && in.bits.vecValid
writeReq(i).bits.vwordOffset := vwordOffset
writeReq(i).bits.mask := in.bits.mask
writeReq(i).bits.data := in.bits.data
writeReq(i).bits.wline := in.bits.wline
val debug_insertIdx = if(i == 0) firstInsertIdx else secondInsertIdx
val insertVec = if(i == 0) firstInsertVec else secondInsertVec
assert(!((PopCount(insertVec) > 1.U) && in.fire && in.bits.vecValid))
val insertIdx = OHToUInt(insertVec)
val accessValid = in.fire && in.bits.vecValid
accessIdx(i).valid := RegNext(accessValid)
accessIdx(i).bits := RegEnable(Mux(canMerge(i), mergeIdx(i), insertIdx), accessValid)
XSDebug(accessValid && canMerge(i), p"merge req $i to line [${mergeIdx(i)}]\n")
XSDebug(accessValid && !canMerge(i), p"insert req $i to line[$insertIdx]\n")
when(accessValid){
when(canMerge(i)){
writeReq(i).bits.wvec := mergeVec(i)
mergeWordReq(in.bits, inptags(i), invtags(i), mergeIdx(i), mergeVec(i), vwordOffset)
}.otherwise({
writeReq(i).bits.wvec := insertVec
wordReqToBufLine(in.bits, inptags(i), invtags(i), insertIdx, insertVec, vwordOffset)
assert(debug_insertIdx === insertIdx)
})
}
// XSDebug of mergeWordReq
(0 until StoreBufferSize).map(entryIdx => {
XSDebug(
accessValid && canMerge(i) &&
mergeVec(i)(entryIdx) && invtags(i) =/= vtag(entryIdx),
"reqvtag =/= sbufvtag req(vtag %x ptag %x) sbuffer(vtag %x ptag %x)\n",
invtags(i) << OffsetWidth,
inptags(i) << OffsetWidth,
vtag(entryIdx) << OffsetWidth,
ptag(entryIdx) << OffsetWidth
)
})
}
for(i <- 0 until StoreBufferSize){
XSDebug(stateVec(i).isValid(),
p"[$i] timeout:${cohCount(i)(EvictCountBits-1)} state:${stateVec(i)}\n"
)
}
for((req, i) <- io.in.zipWithIndex){
XSDebug(req.fire && req.bits.vecValid,
p"accept req [$i]: " +
p"addr:${Hexadecimal(req.bits.addr)} " +
p"mask:${Binary(shiftMaskToLow(req.bits.addr,req.bits.mask))} " +
p"data:${Hexadecimal(shiftDataToLow(req.bits.addr,req.bits.data))}\n"
)
XSDebug(req.valid && !req.ready,
p"req [$i] blocked by sbuffer\n"
)
}
// for now, when enq, trigger a prefetch (if EnableAtCommitMissTrigger)
require(EnsbufferWidth <= StorePipelineWidth)
// ---------------------- Send Dcache Req ---------------------
val sbuffer_empty = Cat(invalidMask).andR
val sq_empty = !Cat(io.in.map(_.valid)).orR
val empty = sbuffer_empty && sq_empty
val threshold = Wire(UInt(5.W)) // RegNext(io.csrCtrl.sbuffer_threshold +& 1.U)
threshold := Constantin.createRecord(s"StoreBufferThreshold_${p(XSCoreParamsKey).HartId}", initValue = 7)
val base = Wire(UInt(5.W))
base := Constantin.createRecord(s"StoreBufferBase_${p(XSCoreParamsKey).HartId}", initValue = 4)
val ActiveCount = PopCount(activeMask)
val ValidCount = PopCount(validMask)
val forceThreshold = Mux(io.force_write, threshold - base, threshold)
val do_eviction = GatedValidRegNext(ActiveCount >= forceThreshold || ActiveCount === (StoreBufferSize-1).U || ValidCount === (StoreBufferSize).U, init = false.B)
require((StoreBufferThreshold + 1) <= StoreBufferSize)
XSDebug(p"ActiveCount[$ActiveCount]\n")
io.sbempty := GatedValidRegNext(empty)
io.flush.empty := GatedValidRegNext(empty && io.sqempty)
// lru.io.flush := sbuffer_state === x_drain_all && empty
switch(sbuffer_state){
is(x_idle){
when(io.flush.valid){
sbuffer_state := x_drain_all
}.elsewhen(do_uarch_drain){
sbuffer_state := x_drain_sbuffer
}.elsewhen(do_eviction){
sbuffer_state := x_replace
}
}
is(x_drain_all){
when(empty){
sbuffer_state := x_idle
}
}
is(x_drain_sbuffer){
when(io.flush.valid){
sbuffer_state := x_drain_all
}.elsewhen(sbuffer_empty){
sbuffer_state := x_idle
}
}
is(x_replace){
when(io.flush.valid){
sbuffer_state := x_drain_all
}.elsewhen(do_uarch_drain){
sbuffer_state := x_drain_sbuffer
}.elsewhen(!do_eviction){
sbuffer_state := x_idle
}
}
}
XSDebug(p"sbuffer state:${sbuffer_state} do eviction:${do_eviction} empty:${empty}\n")
def noSameBlockInflight(idx: UInt): Bool = {
// stateVec(idx) itself must not be s_inflight
!Cat(widthMap(i => inflightMask(i) && ptag(idx) === ptag(i))).orR
}
def genSameBlockInflightMask(ptag_in: UInt): UInt = {
val mask = VecInit(widthMap(i => inflightMask(i) && ptag_in === ptag(i))).asUInt // quite slow, use it with care
assert(!(PopCount(mask) > 1.U))
mask
}
def haveSameBlockInflight(ptag_in: UInt): Bool = {
genSameBlockInflightMask(ptag_in).orR
}
// ---------------------------------------------------------------------------
// sbuffer to dcache pipeline
// ---------------------------------------------------------------------------
// Now sbuffer deq logic is divided into 2 stages:
// sbuffer_out_s0:
// * read data and meta from sbuffer
// * RegNext() them
// * set line state to inflight
// sbuffer_out_s1:
// * send write req to dcache
// sbuffer_out_extra:
// * receive write result from dcache
// * update line state
val sbuffer_out_s1_ready = Wire(Bool())
// ---------------------------------------------------------------------------
// sbuffer_out_s0
// ---------------------------------------------------------------------------
val need_drain = needDrain(sbuffer_state)
val need_replace = do_eviction || (sbuffer_state === x_replace)
val sbuffer_out_s0_evictionIdx = Mux(missqReplayHasTimeOut,
missqReplayTimeOutIdx,
Mux(need_drain,
drainIdx,
Mux(cohHasTimeOut, cohTimeOutIdx, replaceIdx)
)
)
// If there is a inflight dcache req which has same ptag with sbuffer_out_s0_evictionIdx's ptag,
// current eviction should be blocked.
val sbuffer_out_s0_valid = missqReplayHasTimeOut ||
stateVec(sbuffer_out_s0_evictionIdx).isDcacheReqCandidate() &&
(need_drain || cohHasTimeOut || need_replace)
assert(!(
stateVec(sbuffer_out_s0_evictionIdx).isDcacheReqCandidate() &&
!noSameBlockInflight(sbuffer_out_s0_evictionIdx)
))
val sbuffer_out_s0_cango = sbuffer_out_s1_ready
sbuffer_out_s0_fire := sbuffer_out_s0_valid && sbuffer_out_s0_cango
// ---------------------------------------------------------------------------
// sbuffer_out_s1
// ---------------------------------------------------------------------------
// TODO: use EnsbufferWidth
val shouldWaitWriteFinish = GatedValidRegNext(VecInit((0 until EnsbufferWidth).map{i =>
(writeReq(i).bits.wvec.asUInt & UIntToOH(sbuffer_out_s0_evictionIdx).asUInt).orR &&
writeReq(i).valid
}).asUInt.orR)
// block dcache write if read / write hazard
val blockDcacheWrite = shouldWaitWriteFinish
val sbuffer_out_s1_valid = RegInit(false.B)
sbuffer_out_s1_ready := io.dcache.req.ready && !blockDcacheWrite || !sbuffer_out_s1_valid
val sbuffer_out_s1_fire = io.dcache.req.fire
// when sbuffer_out_s1_fire, send dcache req stored in pipeline reg to dcache
when(sbuffer_out_s1_fire){
sbuffer_out_s1_valid := false.B
}
// when sbuffer_out_s0_fire, read dcache req data and store them in a pipeline reg
when(sbuffer_out_s0_cango){
sbuffer_out_s1_valid := sbuffer_out_s0_valid
}
when(sbuffer_out_s0_fire){
stateVec(sbuffer_out_s0_evictionIdx).state_inflight := true.B
stateVec(sbuffer_out_s0_evictionIdx).w_timeout := false.B
// stateVec(sbuffer_out_s0_evictionIdx).s_pipe_req := true.B
}
XSDebug(sbuffer_out_s0_fire, p"$sbuffer_out_s0_evictionIdx will be sent to Dcache\n")
XSDebug(p"need drain:$need_drain cohHasTimeOut: $cohHasTimeOut need replace:$need_replace\n")
XSDebug(p"drainIdx:$drainIdx tIdx:$cohTimeOutIdx replIdx:$replaceIdx " +
p"blocked:${!noSameBlockInflight(sbuffer_out_s0_evictionIdx)} v:${activeMask(sbuffer_out_s0_evictionIdx)}\n")
XSDebug(p"sbuffer_out_s0_valid:$sbuffer_out_s0_valid evictIdx:$sbuffer_out_s0_evictionIdx dcache ready:${io.dcache.req.ready}\n")
// Note: if other dcache req in the same block are inflight,
// the lru update may not accurate
accessIdx(EnsbufferWidth).valid := invalidMask(replaceIdx) || (
need_replace && !need_drain && !cohHasTimeOut && !missqReplayHasTimeOut && sbuffer_out_s0_cango && activeMask(replaceIdx))
accessIdx(EnsbufferWidth).bits := replaceIdx
val sbuffer_out_s1_evictionIdx = RegEnable(sbuffer_out_s0_evictionIdx, sbuffer_out_s0_fire)
val sbuffer_out_s1_evictionPTag = RegEnable(ptag(sbuffer_out_s0_evictionIdx), sbuffer_out_s0_fire)
val sbuffer_out_s1_evictionVTag = RegEnable(vtag(sbuffer_out_s0_evictionIdx), sbuffer_out_s0_fire)
io.dcache.req.valid := sbuffer_out_s1_valid && !blockDcacheWrite
io.dcache.req.bits := DontCare
io.dcache.req.bits.cmd := MemoryOpConstants.M_XWR
io.dcache.req.bits.addr := getAddr(sbuffer_out_s1_evictionPTag)
io.dcache.req.bits.vaddr := getAddr(sbuffer_out_s1_evictionVTag)
io.dcache.req.bits.data := data(sbuffer_out_s1_evictionIdx).asUInt
io.dcache.req.bits.mask := mask(sbuffer_out_s1_evictionIdx).asUInt
io.dcache.req.bits.id := sbuffer_out_s1_evictionIdx
XSDebug(sbuffer_out_s1_fire,
p"send buf [$sbuffer_out_s1_evictionIdx] to Dcache, req fire\n"
)
// update sbuffer status according to dcache resp source
def id_to_sbuffer_id(id: UInt): UInt = {
require(id.getWidth >= log2Up(StoreBufferSize))
id(log2Up(StoreBufferSize)-1, 0)
}
// hit resp
io.dcache.hit_resps.map(resp => {
val dcache_resp_id = resp.bits.id
when (resp.fire) {
stateVec(dcache_resp_id).state_inflight := false.B
stateVec(dcache_resp_id).state_valid := false.B
assert(!resp.bits.replay)
assert(!resp.bits.miss) // not need to resp if miss, to be opted
assert(stateVec(dcache_resp_id).state_inflight === true.B)
}
// Update w_sameblock_inflight flag is delayed for 1 cycle
//
// When a new req allocate a new line in sbuffer, sameblock_inflight check will ignore
// current dcache.hit_resps. Then, in the next cycle, we have plenty of time to check
// if the same block is still inflight
(0 until StoreBufferSize).map(i => {
when(
stateVec(i).w_sameblock_inflight &&
stateVec(i).state_valid &&
GatedValidRegNext(resp.fire) &&
waitInflightMask(i) === UIntToOH(RegEnable(id_to_sbuffer_id(dcache_resp_id), resp.fire))
){
stateVec(i).w_sameblock_inflight := false.B
}
})
})
io.dcache.hit_resps.zip(dataModule.io.maskFlushReq).map{case (resp, maskFlush) => {
maskFlush.valid := resp.fire
maskFlush.bits.wvec := UIntToOH(resp.bits.id)
}}
// replay resp
val replay_resp_id = io.dcache.replay_resp.bits.id
when (io.dcache.replay_resp.fire) {
missqReplayCount(replay_resp_id) := 0.U
stateVec(replay_resp_id).w_timeout := true.B
// waiting for timeout
assert(io.dcache.replay_resp.bits.replay)
assert(stateVec(replay_resp_id).state_inflight === true.B)
}
// TODO: reuse cohCount
(0 until StoreBufferSize).map(i => {
when(stateVec(i).w_timeout && stateVec(i).state_inflight && !missqReplayCount(i)(MissqReplayCountBits-1)) {
missqReplayCount(i) := missqReplayCount(i) + 1.U
}
when(activeMask(i) && !cohTimeOutMask(i)){
cohCount(i) := cohCount(i)+1.U
}
})
if (env.EnableDifftest) {
// hit resp
io.dcache.hit_resps.zipWithIndex.map{case (resp, index) => {
val difftest = DifftestModule(new DiffSbufferEvent, delay = 1)
val dcache_resp_id = resp.bits.id
difftest.coreid := io.hartId
difftest.index := index.U
difftest.valid := resp.fire
difftest.addr := getAddr(ptag(dcache_resp_id))
difftest.data := data(dcache_resp_id).asTypeOf(Vec(CacheLineBytes, UInt(8.W)))
difftest.mask := mask(dcache_resp_id).asUInt
}}
}
// ---------------------- Load Data Forward ---------------------
val mismatch = Wire(Vec(LoadPipelineWidth, Bool()))
XSPerfAccumulate("vaddr_match_failed", mismatch(0) || mismatch(1))
for ((forward, i) <- io.forward.zipWithIndex) {
val vtag_matches = VecInit(widthMap(w => vtag(w) === getVTag(forward.vaddr)))
// ptag_matches uses paddr from dtlb, which is far from sbuffer
val ptag_matches = VecInit(widthMap(w => RegEnable(ptag(w), forward.valid) === RegEnable(getPTag(forward.paddr), forward.valid)))
val tag_matches = vtag_matches
val tag_mismatch = GatedValidRegNext(forward.valid) && VecInit(widthMap(w =>
GatedValidRegNext(vtag_matches(w)) =/= ptag_matches(w) && GatedValidRegNext((activeMask(w) || inflightMask(w)))
)).asUInt.orR
mismatch(i) := tag_mismatch
when (tag_mismatch) {
forward_need_uarch_drain := true.B
}
XSDebug(
tag_mismatch,
"forward tag mismatch: pmatch %x vmatch %x vaddr %x paddr %x\n",
RegNext(ptag_matches.asUInt),
RegNext(vtag_matches.asUInt),
RegNext(forward.vaddr),
RegNext(forward.paddr)
)
val valid_tag_matches = widthMap(w => tag_matches(w) && activeMask(w))
val inflight_tag_matches = widthMap(w => tag_matches(w) && inflightMask(w))
val line_offset_mask = UIntToOH(getVWordOffset(forward.paddr))
val valid_tag_match_reg = valid_tag_matches.map(RegEnable(_, forward.valid))
val inflight_tag_match_reg = inflight_tag_matches.map(RegEnable(_, forward.valid))
val forward_mask_candidate_reg = RegEnable(
VecInit(mask.map(entry => entry(getVWordOffset(forward.paddr)))),
forward.valid
)
val forward_data_candidate_reg = RegEnable(
VecInit(data.map(entry => entry(getVWordOffset(forward.paddr)))),
forward.valid
)
val selectedValidMask = Mux1H(valid_tag_match_reg, forward_mask_candidate_reg)
val selectedValidData = Mux1H(valid_tag_match_reg, forward_data_candidate_reg)
selectedValidMask.suggestName("selectedValidMask_"+i)
selectedValidData.suggestName("selectedValidData_"+i)
val selectedInflightMask = Mux1H(inflight_tag_match_reg, forward_mask_candidate_reg)
val selectedInflightData = Mux1H(inflight_tag_match_reg, forward_data_candidate_reg)
selectedInflightMask.suggestName("selectedInflightMask_"+i)
selectedInflightData.suggestName("selectedInflightData_"+i)
// currently not being used
val selectedInflightMaskFast = Mux1H(line_offset_mask, Mux1H(inflight_tag_matches, mask).asTypeOf(Vec(CacheLineVWords, Vec(VDataBytes, Bool()))))
val selectedValidMaskFast = Mux1H(line_offset_mask, Mux1H(valid_tag_matches, mask).asTypeOf(Vec(CacheLineVWords, Vec(VDataBytes, Bool()))))
forward.dataInvalid := false.B // data in store line merge buffer is always ready
forward.matchInvalid := tag_mismatch // paddr / vaddr cam result does not match
for (j <- 0 until VDataBytes) {
forward.forwardMask(j) := false.B
forward.forwardData(j) := DontCare
// valid entries have higher priority than inflight entries
when(selectedInflightMask(j)) {
forward.forwardMask(j) := true.B
forward.forwardData(j) := selectedInflightData(j)
}
when(selectedValidMask(j)) {
forward.forwardMask(j) := true.B
forward.forwardData(j) := selectedValidData(j)
}
forward.forwardMaskFast(j) := selectedInflightMaskFast(j) || selectedValidMaskFast(j)
}
forward.addrInvalid := DontCare
}
for (i <- 0 until StoreBufferSize) {
XSDebug("sbf entry " + i + " : ptag %x vtag %x valid %x active %x inflight %x w_timeout %x\n",
ptag(i) << OffsetWidth,
vtag(i) << OffsetWidth,
stateVec(i).isValid(),
activeMask(i),
inflightMask(i),
stateVec(i).w_timeout
)
}
/*
*
**********************************************************
* ------------- ------------- *
* | XiangShan | | NEMU | *
* ------------- ------------- *
* | | *
* V V *
* ----- ----- *
* | Q | | Q | *
* | U | | U | *
* | E | | E | *
* | U | | U | *
* | E | | E | *
* | | | | *
* ----- ----- *
* | | *
* | -------------- | *
* |>>>>>>>>| DIFFTEST |<<<<<<<<<| *
* -------------- *
**********************************************************
*/
// Initialize when unenabled difftest.
for (i <- 0 until EnsbufferWidth) {
io.vecDifftestInfo(i) := DontCare
}
io.generateToSQ.diffStoreEventCount := 0.U // initializtion
if (env.EnableDifftest) {
val VecMemFLOWMaxNumber = 16
val WlineMaxNumber = blockWords
def UIntSlice(in: UInt, High: UInt, Low: UInt): UInt = {
val maxNum = in.getWidth
val result = Wire(Vec(maxNum, Bool()))
for (i <- 0 until maxNum) {
when (Low + i.U <= High) {
result(i) := in(Low + i.U)
}.otherwise{
result(i) := 0.U
}
}
result.asUInt
}
// To align with 'nemu', we need:
// For 'unit-store' and 'whole' vector store instr, we re-split here,
// and for the res, we do nothing.
var diffStoreEventCount: Int = 0
io.generateToSQ.diffStoreEventCount := diffStoreEventCount.U
for (i <- 0 until EnsbufferWidth) {
io.vecDifftestInfo(i).ready := io.in(i).ready
val uop = io.vecDifftestInfo(i).bits.uop
val unaligned_start = io.vecDifftestInfo(i).bits.start
val unaligned_offset = io.vecDifftestInfo(i).bits.offset
val unaligned_start_bits = (io.vecDifftestInfo(i).bits.start << 3.U).asUInt
val unaligned_offset_bits = (io.vecDifftestInfo(i).bits.offset << 3.U).asUInt
val isVse = isVStore(uop.fuType) && LSUOpType.isUStride(uop.fuOpType)
val isVsm = isVStore(uop.fuType) && VstuType.isMasked(uop.fuOpType)
val isVsr = isVStore(uop.fuType) && VstuType.isWhole(uop.fuOpType)
val vpu = uop.vpu
val veew = uop.vpu.veew
val eew = EewLog2(veew)
val EEB = (1.U << eew).asUInt //Only when VLEN=128 effective element byte
val EEWBits = (EEB << 3.U).asUInt
val nf = Mux(isVsr, 0.U, vpu.nf)
val isSegment = nf =/= 0.U && !isVsm
val isVSLine = (isVse || isVsm || isVsr) && !isSegment
val isWline = io.in(i).bits.wline
// The number of stores generated by a uop theroy.
// No other vector instructions need to be considered.
val flow = Mux(
isVSLine,
(16.U >> eew).asUInt,
0.U
)
val rawData = io.in(i).bits.data
val rawMask = io.in(i).bits.mask
val rawAddr = io.in(i).bits.addr
// A common difftest interface for scalar and vector instr
val difftestCommon = DifftestModule(new DiffStoreEvent, delay = 2, dontCare = true)
diffStoreEventCount += 1
when (isVSLine) {
val upper = Mux(unaligned_start === 0.U && unaligned_offset =/= 0.U, unaligned_offset, EEB - 1.U + unaligned_offset) // unit-stride second write request
val upperBits = Mux(unaligned_start === 0.U && unaligned_offset =/= 0.U,
(unaligned_offset << 3.U).asUInt - 1.U,
((EEB + unaligned_offset) << 3.U).asUInt - 1.U)// unit-stride second write request
val splitMask = UIntSlice(rawMask, upper, unaligned_start)(7,0) // Byte
val splitData = UIntSlice(rawData, upperBits, unaligned_start_bits)(63,0) // Double word
val storeCommit = io.in(i).fire && splitMask.orR && io.in(i).bits.vecValid
// align with ref
val waddr = Mux(unaligned_offset =/= 0.U && rawAddr(3), ZeroExt(Cat(rawAddr(PAddrBits - 1, 3), 0.U(3.W)), 64), rawAddr)
val wmask = Mux(unaligned_offset =/= 0.U && rawAddr(3), 0.U, splitMask << unaligned_offset)
val wdata = Mux(unaligned_offset =/= 0.U && rawAddr(3), 0.U, (splitData & MaskExpand(splitMask)) << unaligned_offset_bits)
difftestCommon.coreid := io.hartId
difftestCommon.index := (i*VecMemFLOWMaxNumber).U
difftestCommon.valid := storeCommit
difftestCommon.addr := waddr
difftestCommon.data := wdata
difftestCommon.mask := wmask
difftestCommon.robidx := io.vecDifftestInfo(i).bits.uop.robIdx.value
difftestCommon.pc := io.vecDifftestInfo(i).bits.uop.pc
} .elsewhen (!isWline) {
val storeCommit = io.in(i).fire
val waddr = ZeroExt(Cat(io.in(i).bits.addr(PAddrBits - 1, 3), 0.U(3.W)), 64)
val sbufferMask = shiftMaskToLow(io.in(i).bits.addr, io.in(i).bits.mask)
val sbufferData = shiftDataToLow(io.in(i).bits.addr, io.in(i).bits.data)
val wmask = sbufferMask
val wdata = sbufferData & MaskExpand(sbufferMask)
difftestCommon.coreid := io.hartId
difftestCommon.index := (i*VecMemFLOWMaxNumber).U
difftestCommon.valid := storeCommit && io.in(i).bits.vecValid
difftestCommon.addr := waddr
difftestCommon.data := wdata
difftestCommon.mask := wmask
difftestCommon.robidx := io.vecDifftestInfo(i).bits.uop.robIdx.value
difftestCommon.pc := io.vecDifftestInfo(i).bits.uop.pc
}
for (index <- 0 until WlineMaxNumber) {
val difftest = DifftestModule(new DiffStoreEvent, delay = 2, dontCare = true)
diffStoreEventCount += 1
val storeCommit = io.in(i).fire && io.in(i).bits.vecValid
val blockAddr = get_block_addr(io.in(i).bits.addr)
when (isWline) {
difftest.coreid := io.hartId
difftest.index := (i*VecMemFLOWMaxNumber + index).U
difftest.valid := storeCommit
difftest.addr := blockAddr + (index.U << wordOffBits)
difftest.data := io.in(i).bits.data
difftest.mask := ((1 << wordBytes) - 1).U
difftest.robidx := io.vecDifftestInfo(i).bits.uop.robIdx.value
difftest.pc := io.vecDifftestInfo(i).bits.uop.pc
assert(!storeCommit || (io.in(i).bits.data === 0.U), "wline only supports whole zero write now")
}
}
// Only the interface used by the 'unit-store' and 'whole' vector store instr
for (index <- 1 until VecMemFLOWMaxNumber) {
val difftest = DifftestModule(new DiffStoreEvent, delay = 2, dontCare = true)
diffStoreEventCount += 1
// I've already done something process with 'mask' outside:
// Different cases of 'vm' have been considered:
// Any valid store will definitely not have all 0 masks,
// and the extra part due to unaligned access must have a mask of 0
when (index.U < flow && isVSLine) {
// Make NEMU-difftest happy
val shiftIndex = EEB*index.U
val shiftFlag = shiftIndex(2,0).orR // Double word Flag
val shiftBytes = Mux(shiftFlag, shiftIndex(2,0), 0.U)
val shiftBits = shiftBytes << 3.U
val splitMask = UIntSlice(rawMask, (EEB*(index+1).U - 1.U) + unaligned_offset, EEB*index.U + unaligned_offset)(7,0) // Byte
val splitData = UIntSlice(rawData, (EEWBits*(index+1).U - 1.U) + unaligned_offset_bits, EEWBits*index.U + unaligned_offset_bits)(63,0) // Double word
val storeCommit = io.in(i).fire && splitMask.orR && io.in(i).bits.vecValid
val waddr = Mux(unaligned_offset =/= 0.U && shiftIndex(3), Cat(rawAddr(PAddrBits - 1, 4), 0.U(4.W)),Cat(rawAddr(PAddrBits - 1, 4), Cat(shiftIndex(3), 0.U(3.W))))
val wmask = Mux(unaligned_offset =/= 0.U && shiftIndex(3), 0.U,splitMask << (shiftBytes + unaligned_offset))
val wdata = Mux(unaligned_offset =/= 0.U && shiftIndex(3), 0.U,(splitData & MaskExpand(splitMask)) << (shiftBits.asUInt + unaligned_offset_bits))
difftest.coreid := io.hartId
difftest.index := (i*VecMemFLOWMaxNumber+index).U
difftest.valid := storeCommit
difftest.addr := waddr
difftest.data := wdata
difftest.mask := wmask
difftest.robidx := io.vecDifftestInfo(i).bits.uop.robIdx.value
difftest.pc := io.vecDifftestInfo(i).bits.uop.pc
}
}
}
println("SBuffer: diffStoreEventCount = " + diffStoreEventCount)
}
val perf_valid_entry_count = RegNext(PopCount(VecInit(stateVec.map(s => !s.isInvalid())).asUInt))
XSPerfHistogram("util", perf_valid_entry_count, true.B, 0, StoreBufferSize, 1)
XSPerfAccumulate("sbuffer_req_valid", PopCount(VecInit(io.in.map(_.valid)).asUInt))
XSPerfAccumulate("sbuffer_req_fire", PopCount(VecInit(io.in.map(_.fire)).asUInt))
XSPerfAccumulate("sbuffer_req_fire_vecinvalid", PopCount(VecInit(io.in.map(data => data.fire && !data.bits.vecValid)).asUInt))
XSPerfAccumulate("sbuffer_merge", PopCount(VecInit(io.in.zipWithIndex.map({case (in, i) => in.fire && canMerge(i)})).asUInt))
XSPerfAccumulate("sbuffer_newline", PopCount(VecInit(io.in.zipWithIndex.map({case (in, i) => in.fire && !canMerge(i)})).asUInt))
XSPerfAccumulate("dcache_req_valid", io.dcache.req.valid)
XSPerfAccumulate("dcache_req_fire", io.dcache.req.fire)
XSPerfAccumulate("sbuffer_idle", sbuffer_state === x_idle)
XSPerfAccumulate("sbuffer_flush", sbuffer_state === x_drain_sbuffer)
XSPerfAccumulate("sbuffer_replace", sbuffer_state === x_replace)
XSPerfAccumulate("evenCanInsert", evenCanInsert)
XSPerfAccumulate("oddCanInsert", oddCanInsert)
XSPerfAccumulate("mainpipe_resp_valid", io.dcache.main_pipe_hit_resp.fire)
//XSPerfAccumulate("refill_resp_valid", io.dcache.refill_hit_resp.fire)
XSPerfAccumulate("replay_resp_valid", io.dcache.replay_resp.fire)
XSPerfAccumulate("coh_timeout", cohHasTimeOut)
// val (store_latency_sample, store_latency) = TransactionLatencyCounter(io.lsu.req.fire, io.lsu.resp.fire)
// XSPerfHistogram("store_latency", store_latency, store_latency_sample, 0, 100, 10)
// XSPerfAccumulate("store_req", io.lsu.req.fire)
val perfEvents = Seq(
("sbuffer_req_valid ", PopCount(VecInit(io.in.map(_.valid)).asUInt) ),
("sbuffer_req_fire ", PopCount(VecInit(io.in.map(_.fire)).asUInt) ),
("sbuffer_merge ", PopCount(VecInit(io.in.zipWithIndex.map({case (in, i) => in.fire && canMerge(i)})).asUInt) ),
("sbuffer_newline ", PopCount(VecInit(io.in.zipWithIndex.map({case (in, i) => in.fire && !canMerge(i)})).asUInt) ),
("dcache_req_valid ", io.dcache.req.valid ),
("dcache_req_fire ", io.dcache.req.fire ),
("sbuffer_idle ", sbuffer_state === x_idle ),
("sbuffer_flush ", sbuffer_state === x_drain_sbuffer ),
("sbuffer_replace ", sbuffer_state === x_replace ),
("mpipe_resp_valid ", io.dcache.main_pipe_hit_resp.fire ),
//("refill_resp_valid ", io.dcache.refill_hit_resp.fire ),
("replay_resp_valid ", io.dcache.replay_resp.fire ),
("coh_timeout ", cohHasTimeOut ),
("sbuffer_1_4_valid ", (perf_valid_entry_count < (StoreBufferSize.U/4.U)) ),
("sbuffer_2_4_valid ", (perf_valid_entry_count > (StoreBufferSize.U/4.U)) & (perf_valid_entry_count <= (StoreBufferSize.U/2.U)) ),
("sbuffer_3_4_valid ", (perf_valid_entry_count > (StoreBufferSize.U/2.U)) & (perf_valid_entry_count <= (StoreBufferSize.U*3.U/4.U))),
("sbuffer_full_valid", (perf_valid_entry_count > (StoreBufferSize.U*3.U/4.U)))
)
generatePerfEvent()
}