XiangShan/src/main/scala/xiangshan/mem/pipeline/LoadUnit.scala

1976 lines
94 KiB
Scala

/***************************************************************************************
* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
* Copyright (c) 2020-2021 Peng Cheng Laboratory
*
* XiangShan is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
*
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
*
* See the Mulan PSL v2 for more details.
***************************************************************************************/
package xiangshan.mem
import org.chipsalliance.cde.config.Parameters
import chisel3._
import chisel3.util._
import utils._
import utility._
import xiangshan._
import xiangshan.ExceptionNO._
import xiangshan.backend.Bundles.{DynInst, MemExuInput, MemExuOutput, connectSamePort}
import xiangshan.backend.fu.PMPRespBundle
import xiangshan.backend.fu.FuConfig._
import xiangshan.backend.fu.FuType
import xiangshan.backend.ctrlblock.{DebugLsInfoBundle, LsTopdownInfo}
import xiangshan.backend.rob.RobPtr
import xiangshan.backend.ctrlblock.DebugLsInfoBundle
import xiangshan.backend.fu.NewCSR._
import xiangshan.backend.fu.util.SdtrigExt
import xiangshan.mem.mdp._
import xiangshan.mem.Bundles._
import xiangshan.cache._
import xiangshan.cache.wpu.ReplayCarry
import xiangshan.cache.mmu._
class LoadToLsqReplayIO(implicit p: Parameters) extends XSBundle
with HasDCacheParameters
with HasTlbConst
{
// mshr refill index
val mshr_id = UInt(log2Up(cfg.nMissEntries).W)
// get full data from store queue and sbuffer
val full_fwd = Bool()
// wait for data from store inst's store queue index
val data_inv_sq_idx = new SqPtr
// wait for address from store queue index
val addr_inv_sq_idx = new SqPtr
// replay carry
val rep_carry = new ReplayCarry(nWays)
// data in last beat
val last_beat = Bool()
// replay cause
val cause = Vec(LoadReplayCauses.allCauses, Bool())
// performance debug information
val debug = new PerfDebugInfo
// tlb hint
val tlb_id = UInt(log2Up(loadfiltersize).W)
val tlb_full = Bool()
// alias
def mem_amb = cause(LoadReplayCauses.C_MA)
def tlb_miss = cause(LoadReplayCauses.C_TM)
def fwd_fail = cause(LoadReplayCauses.C_FF)
def dcache_rep = cause(LoadReplayCauses.C_DR)
def dcache_miss = cause(LoadReplayCauses.C_DM)
def wpu_fail = cause(LoadReplayCauses.C_WF)
def bank_conflict = cause(LoadReplayCauses.C_BC)
def rar_nack = cause(LoadReplayCauses.C_RAR)
def raw_nack = cause(LoadReplayCauses.C_RAW)
def misalign_nack = cause(LoadReplayCauses.C_MF)
def nuke = cause(LoadReplayCauses.C_NK)
def need_rep = cause.asUInt.orR
}
class LoadToLsqIO(implicit p: Parameters) extends XSBundle {
// ldu -> lsq UncacheBuffer
val ldin = DecoupledIO(new LqWriteBundle)
// uncache-mmio -> ldu
val uncache = Flipped(DecoupledIO(new MemExuOutput))
val ld_raw_data = Input(new LoadDataFromLQBundle)
// uncache-nc -> ldu
val nc_ldin = Flipped(DecoupledIO(new LsPipelineBundle))
// storequeue -> ldu
val forward = new PipeLoadForwardQueryIO
// ldu -> lsq LQRAW
val stld_nuke_query = new LoadNukeQueryIO
// ldu -> lsq LQRAR
val ldld_nuke_query = new LoadNukeQueryIO
// lq -> ldu for misalign
val lqDeqPtr = Input(new LqPtr)
}
class LoadToLoadIO(implicit p: Parameters) extends XSBundle {
val valid = Bool()
val data = UInt(XLEN.W) // load to load fast path is limited to ld (64 bit) used as vaddr src1 only
val dly_ld_err = Bool()
}
class LoadUnitTriggerIO(implicit p: Parameters) extends XSBundle {
val tdata2 = Input(UInt(64.W))
val matchType = Input(UInt(2.W))
val tEnable = Input(Bool()) // timing is calculated before this
val addrHit = Output(Bool())
}
class LoadUnit(implicit p: Parameters) extends XSModule
with HasLoadHelper
with HasPerfEvents
with HasDCacheParameters
with HasCircularQueuePtrHelper
with HasVLSUParameters
with SdtrigExt
{
val io = IO(new Bundle() {
// control
val redirect = Flipped(ValidIO(new Redirect))
val csrCtrl = Flipped(new CustomCSRCtrlIO)
// int issue path
val ldin = Flipped(Decoupled(new MemExuInput))
val ldout = Decoupled(new MemExuOutput)
// vec issue path
val vecldin = Flipped(Decoupled(new VecPipeBundle))
val vecldout = Decoupled(new VecPipelineFeedbackIO(isVStore = false))
// misalignBuffer issue path
val misalign_ldin = Flipped(Decoupled(new LsPipelineBundle))
val misalign_ldout = Valid(new LqWriteBundle)
// data path
val tlb = new TlbRequestIO(2)
val pmp = Flipped(new PMPRespBundle()) // arrive same to tlb now
val dcache = new DCacheLoadIO
val sbuffer = new LoadForwardQueryIO
val ubuffer = new LoadForwardQueryIO
val lsq = new LoadToLsqIO
val tl_d_channel = Input(new DcacheToLduForwardIO)
val forward_mshr = Flipped(new LduToMissqueueForwardIO)
// val refill = Flipped(ValidIO(new Refill))
val l2_hint = Input(Valid(new L2ToL1Hint))
val tlb_hint = Flipped(new TlbHintReq)
// fast wakeup
// TODO: implement vector fast wakeup
val fast_uop = ValidIO(new DynInst) // early wakeup signal generated in load_s1, send to RS in load_s2
// trigger
val fromCsrTrigger = Input(new CsrTriggerBundle)
// prefetch
val prefetch_train = ValidIO(new LsPrefetchTrainBundle()) // provide prefetch info to sms
val prefetch_train_l1 = ValidIO(new LsPrefetchTrainBundle()) // provide prefetch info to stream & stride
// speculative for gated control
val s1_prefetch_spec = Output(Bool())
val s2_prefetch_spec = Output(Bool())
val prefetch_req = Flipped(ValidIO(new L1PrefetchReq)) // hardware prefetch to l1 cache req
val canAcceptLowConfPrefetch = Output(Bool())
val canAcceptHighConfPrefetch = Output(Bool())
// ifetchPrefetch
val ifetchPrefetch = ValidIO(new SoftIfetchPrefetchBundle)
// load to load fast path
val l2l_fwd_in = Input(new LoadToLoadIO)
val l2l_fwd_out = Output(new LoadToLoadIO)
val ld_fast_match = Input(Bool())
val ld_fast_fuOpType = Input(UInt())
val ld_fast_imm = Input(UInt(12.W))
// rs feedback
val wakeup = ValidIO(new DynInst)
val feedback_fast = ValidIO(new RSFeedback) // stage 2
val feedback_slow = ValidIO(new RSFeedback) // stage 3
val ldCancel = Output(new LoadCancelIO()) // use to cancel the uops waked by this load, and cancel load
// load ecc error
val s3_dly_ld_err = Output(Bool()) // Note that io.s3_dly_ld_err and io.lsq.s3_dly_ld_err is different
// schedule error query
val stld_nuke_query = Flipped(Vec(StorePipelineWidth, Valid(new StoreNukeQueryBundle)))
// queue-based replay
val replay = Flipped(Decoupled(new LsPipelineBundle))
val lq_rep_full = Input(Bool())
// misc
val s2_ptr_chasing = Output(Bool()) // provide right pc for hw prefetch
// Load fast replay path
val fast_rep_in = Flipped(Decoupled(new LqWriteBundle))
val fast_rep_out = Decoupled(new LqWriteBundle)
// to misalign buffer
val misalign_enq = new MisalignBufferEnqIO
val misalign_allow_spec = Input(Bool())
// Load RAR rollback
val rollback = Valid(new Redirect)
// perf
val debug_ls = Output(new DebugLsInfoBundle)
val lsTopdownInfo = Output(new LsTopdownInfo)
val correctMissTrain = Input(Bool())
})
PerfCCT.updateInstPos(io.ldin.bits.uop.debug_seqNum, PerfCCT.InstPos.AtFU.id.U, io.ldin.valid, clock, reset)
val s1_ready, s2_ready, s3_ready = WireInit(false.B)
// Pipeline
// --------------------------------------------------------------------------------
// stage 0
// --------------------------------------------------------------------------------
// generate addr, use addr to query DCache and DTLB
val s0_valid = Wire(Bool())
val s0_mmio_select = Wire(Bool())
val s0_nc_select = Wire(Bool())
val s0_misalign_select= Wire(Bool())
val s0_kill = Wire(Bool())
val s0_can_go = s1_ready
val s0_fire = s0_valid && s0_can_go
val s0_mmio_fire = s0_mmio_select && s0_can_go
val s0_nc_fire = s0_nc_select && s0_can_go
val s0_out = Wire(new LqWriteBundle)
val s0_tlb_valid = Wire(Bool())
val s0_tlb_hlv = Wire(Bool())
val s0_tlb_hlvx = Wire(Bool())
val s0_tlb_vaddr = Wire(UInt(VAddrBits.W))
val s0_tlb_fullva = Wire(UInt(XLEN.W))
val s0_dcache_vaddr = Wire(UInt(VAddrBits.W))
val s0_is128bit = Wire(Bool())
val s0_misalign_wakeup_fire = s0_misalign_select && s0_can_go &&
io.dcache.req.ready &&
io.misalign_ldin.bits.misalignNeedWakeUp
// flow source bundle
class FlowSource extends Bundle {
val vaddr = UInt(VAddrBits.W)
val mask = UInt((VLEN/8).W)
val uop = new DynInst
val try_l2l = Bool()
val has_rob_entry = Bool()
val rep_carry = new ReplayCarry(nWays)
val mshrid = UInt(log2Up(cfg.nMissEntries).W)
val isFirstIssue = Bool()
val fast_rep = Bool()
val ld_rep = Bool()
val l2l_fwd = Bool()
val prf = Bool()
val prf_rd = Bool()
val prf_wr = Bool()
val prf_i = Bool()
val sched_idx = UInt(log2Up(LoadQueueReplaySize+1).W)
// Record the issue port idx of load issue queue. This signal is used by load cancel.
val deqPortIdx = UInt(log2Ceil(LoadPipelineWidth).W)
val frm_mabuf = Bool()
// vec only
val isvec = Bool()
val is128bit = Bool()
val uop_unit_stride_fof = Bool()
val reg_offset = UInt(vOffsetBits.W)
val vecActive = Bool() // 1: vector active element or scala mem operation, 0: vector not active element
val is_first_ele = Bool()
// val flowPtr = new VlflowPtr
val usSecondInv = Bool()
val mbIndex = UInt(vlmBindexBits.W)
val elemIdx = UInt(elemIdxBits.W)
val elemIdxInsideVd = UInt(elemIdxBits.W)
val alignedType = UInt(alignTypeBits.W)
val vecBaseVaddr = UInt(VAddrBits.W)
//for Svpbmt NC
val isnc = Bool()
val paddr = UInt(PAddrBits.W)
val data = UInt((VLEN+1).W)
}
val s0_sel_src = Wire(new FlowSource)
// load flow select/gen
// src 0: misalignBuffer load (io.misalign_ldin)
// src 1: super load replayed by LSQ (cache miss replay) (io.replay)
// src 2: fast load replay (io.fast_rep_in)
// src 3: mmio (io.lsq.uncache)
// src 4: nc (io.lsq.nc_ldin)
// src 5: load replayed by LSQ (io.replay)
// src 6: hardware prefetch from prefetchor (high confidence) (io.prefetch)
// NOTE: Now vec/int loads are sent from same RS
// A vec load will be splited into multiple uops,
// so as long as one uop is issued,
// the other uops should have higher priority
// src 7: vec read from RS (io.vecldin)
// src 8: int read / software prefetch first issue from RS (io.in)
// src 9: load try pointchaising when no issued or replayed load (io.fastpath)
// src10: hardware prefetch from prefetchor (high confidence) (io.prefetch)
// priority: high to low
val s0_rep_stall = io.ldin.valid && isAfter(io.replay.bits.uop.lqIdx, io.ldin.bits.uop.lqIdx) ||
io.vecldin.valid && isAfter(io.replay.bits.uop.lqIdx, io.vecldin.bits.uop.lqIdx)
private val SRC_NUM = 11
private val Seq(
mab_idx, super_rep_idx, fast_rep_idx, mmio_idx, nc_idx, lsq_rep_idx,
high_pf_idx, vec_iss_idx, int_iss_idx, l2l_fwd_idx, low_pf_idx
) = (0 until SRC_NUM).toSeq
// load flow source valid
val s0_src_valid_vec = WireInit(VecInit(Seq(
io.misalign_ldin.valid,
io.replay.valid && io.replay.bits.forward_tlDchannel,
io.fast_rep_in.valid,
io.lsq.uncache.valid,
io.lsq.nc_ldin.valid,
io.replay.valid && !io.replay.bits.forward_tlDchannel && !s0_rep_stall,
io.prefetch_req.valid && io.prefetch_req.bits.confidence > 0.U,
io.vecldin.valid,
io.ldin.valid, // int flow first issue or software prefetch
io.l2l_fwd_in.valid,
io.prefetch_req.valid && io.prefetch_req.bits.confidence === 0.U,
)))
// load flow source ready
val s0_src_ready_vec = Wire(Vec(SRC_NUM, Bool()))
s0_src_ready_vec(0) := true.B
for(i <- 1 until SRC_NUM){
s0_src_ready_vec(i) := !s0_src_valid_vec.take(i).reduce(_ || _)
}
// load flow source select (OH)
val s0_src_select_vec = WireInit(VecInit((0 until SRC_NUM).map{i => s0_src_valid_vec(i) && s0_src_ready_vec(i)}))
val s0_hw_prf_select = s0_src_select_vec(high_pf_idx) || s0_src_select_vec(low_pf_idx)
val s0_tlb_no_query = s0_hw_prf_select || s0_sel_src.prf_i ||
s0_src_select_vec(fast_rep_idx) || s0_src_select_vec(mmio_idx) ||
s0_src_select_vec(nc_idx)
s0_valid := !s0_kill && (s0_src_select_vec(nc_idx) || ((
s0_src_valid_vec(mab_idx) ||
s0_src_valid_vec(super_rep_idx) ||
s0_src_valid_vec(fast_rep_idx) ||
s0_src_valid_vec(lsq_rep_idx) ||
s0_src_valid_vec(high_pf_idx) ||
s0_src_valid_vec(vec_iss_idx) ||
s0_src_valid_vec(int_iss_idx) ||
s0_src_valid_vec(l2l_fwd_idx) ||
s0_src_valid_vec(low_pf_idx)
) && !s0_src_select_vec(mmio_idx) && io.dcache.req.ready &&
!(io.misalign_ldin.fire && io.misalign_ldin.bits.misalignNeedWakeUp) // Currently, misalign is the highest priority
))
s0_mmio_select := s0_src_select_vec(mmio_idx) && !s0_kill
s0_nc_select := s0_src_select_vec(nc_idx) && !s0_kill
//judgment: is NC with data or not.
//If true, it's from `io.lsq.nc_ldin` or `io.fast_rep_in`
val s0_nc_with_data = s0_sel_src.isnc && !s0_kill
s0_misalign_select := s0_src_select_vec(mab_idx) && !s0_kill
// if is hardware prefetch or fast replay, don't send valid to tlb
s0_tlb_valid := (
s0_src_valid_vec(mab_idx) ||
s0_src_valid_vec(super_rep_idx) ||
s0_src_valid_vec(lsq_rep_idx) ||
s0_src_valid_vec(vec_iss_idx) ||
s0_src_valid_vec(int_iss_idx) ||
s0_src_valid_vec(l2l_fwd_idx)
) && io.dcache.req.ready
// which is S0's out is ready and dcache is ready
val s0_try_ptr_chasing = s0_src_select_vec(l2l_fwd_idx)
val s0_do_try_ptr_chasing = s0_try_ptr_chasing && s0_can_go && io.dcache.req.ready
val s0_ptr_chasing_vaddr = io.l2l_fwd_in.data(5, 0) +& io.ld_fast_imm(5, 0)
val s0_ptr_chasing_canceled = WireInit(false.B)
s0_kill := s0_ptr_chasing_canceled
// prefetch related ctrl signal
io.canAcceptLowConfPrefetch := s0_src_ready_vec(low_pf_idx) && io.dcache.req.ready
io.canAcceptHighConfPrefetch := s0_src_ready_vec(high_pf_idx) && io.dcache.req.ready
// query DTLB
io.tlb.req.valid := s0_tlb_valid
io.tlb.req.bits.cmd := Mux(s0_sel_src.prf,
Mux(s0_sel_src.prf_wr, TlbCmd.write, TlbCmd.read),
TlbCmd.read
)
io.tlb.req.bits.isPrefetch := s0_sel_src.prf
io.tlb.req.bits.vaddr := s0_tlb_vaddr
io.tlb.req.bits.fullva := s0_tlb_fullva
io.tlb.req.bits.checkfullva := s0_src_select_vec(vec_iss_idx) || s0_src_select_vec(int_iss_idx)
io.tlb.req.bits.hyperinst := s0_tlb_hlv
io.tlb.req.bits.hlvx := s0_tlb_hlvx
io.tlb.req.bits.size := Mux(s0_sel_src.isvec, s0_sel_src.alignedType(2,0), LSUOpType.size(s0_sel_src.uop.fuOpType))
io.tlb.req.bits.kill := s0_kill || s0_tlb_no_query // if does not need to be translated, kill it
io.tlb.req.bits.memidx.is_ld := true.B
io.tlb.req.bits.memidx.is_st := false.B
io.tlb.req.bits.memidx.idx := s0_sel_src.uop.lqIdx.value
io.tlb.req.bits.debug.robIdx := s0_sel_src.uop.robIdx
io.tlb.req.bits.no_translate := s0_tlb_no_query // hardware prefetch and fast replay does not need to be translated, need this signal for pmp check
io.tlb.req.bits.debug.pc := s0_sel_src.uop.pc
io.tlb.req.bits.debug.isFirstIssue := s0_sel_src.isFirstIssue
// query DCache
io.dcache.req.valid := s0_valid && !s0_sel_src.prf_i && !s0_nc_with_data
io.dcache.req.bits.cmd := Mux(s0_sel_src.prf_rd,
MemoryOpConstants.M_PFR,
Mux(s0_sel_src.prf_wr, MemoryOpConstants.M_PFW, MemoryOpConstants.M_XRD)
)
io.dcache.req.bits.vaddr := s0_dcache_vaddr
io.dcache.req.bits.vaddr_dup := s0_dcache_vaddr
io.dcache.req.bits.mask := s0_sel_src.mask
io.dcache.req.bits.data := DontCare
io.dcache.req.bits.isFirstIssue := s0_sel_src.isFirstIssue
io.dcache.req.bits.instrtype := Mux(s0_sel_src.prf, DCACHE_PREFETCH_SOURCE.U, LOAD_SOURCE.U)
io.dcache.req.bits.debug_robIdx := s0_sel_src.uop.robIdx.value
io.dcache.req.bits.replayCarry := s0_sel_src.rep_carry
io.dcache.req.bits.id := DontCare // TODO: update cache meta
io.dcache.req.bits.lqIdx := s0_sel_src.uop.lqIdx
io.dcache.pf_source := Mux(s0_hw_prf_select, io.prefetch_req.bits.pf_source.value, L1_HW_PREFETCH_NULL)
io.dcache.is128Req := s0_is128bit
// load flow priority mux
def fromNullSource(): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out
}
def fromMisAlignBufferSource(src: LsPipelineBundle): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out.vaddr := src.vaddr
out.mask := src.mask
out.uop := src.uop
out.try_l2l := false.B
out.has_rob_entry := false.B
out.rep_carry := src.replayCarry
out.mshrid := src.mshrid
out.frm_mabuf := true.B
out.isFirstIssue := false.B
out.fast_rep := false.B
out.ld_rep := false.B
out.l2l_fwd := false.B
out.prf := false.B
out.prf_rd := false.B
out.prf_wr := false.B
out.sched_idx := src.schedIndex
out.isvec := src.isvec
out.is128bit := src.is128bit
out.vecActive := true.B
out
}
def fromFastReplaySource(src: LqWriteBundle): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out.vaddr := src.vaddr
out.paddr := src.paddr
out.mask := src.mask
out.uop := src.uop
out.try_l2l := false.B
out.has_rob_entry := src.hasROBEntry
out.rep_carry := src.rep_info.rep_carry
out.mshrid := src.rep_info.mshr_id
out.frm_mabuf := src.isFrmMisAlignBuf
out.isFirstIssue := false.B
out.fast_rep := true.B
out.ld_rep := src.isLoadReplay
out.l2l_fwd := false.B
out.prf := LSUOpType.isPrefetch(src.uop.fuOpType) && !src.isvec
out.prf_rd := src.uop.fuOpType === LSUOpType.prefetch_r
out.prf_wr := src.uop.fuOpType === LSUOpType.prefetch_w
out.prf_i := false.B
out.sched_idx := src.schedIndex
out.isvec := src.isvec
out.is128bit := src.is128bit
out.uop_unit_stride_fof := src.uop_unit_stride_fof
out.reg_offset := src.reg_offset
out.vecActive := src.vecActive
out.is_first_ele := src.is_first_ele
out.usSecondInv := src.usSecondInv
out.mbIndex := src.mbIndex
out.elemIdx := src.elemIdx
out.elemIdxInsideVd := src.elemIdxInsideVd
out.alignedType := src.alignedType
out.isnc := src.nc
out.data := src.data
out
}
// TODO: implement vector mmio
def fromMmioSource(src: MemExuOutput) = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out.mask := 0.U
out.uop := src.uop
out.try_l2l := false.B
out.has_rob_entry := false.B
out.rep_carry := 0.U.asTypeOf(out.rep_carry)
out.mshrid := 0.U
out.frm_mabuf := false.B
out.isFirstIssue := false.B
out.fast_rep := false.B
out.ld_rep := false.B
out.l2l_fwd := false.B
out.prf := false.B
out.prf_rd := false.B
out.prf_wr := false.B
out.prf_i := false.B
out.sched_idx := 0.U
out.vecActive := true.B
out
}
def fromNcSource(src: LsPipelineBundle): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out.vaddr := src.vaddr
out.paddr := src.paddr
out.mask := genVWmask(src.vaddr, src.uop.fuOpType(1,0))
out.uop := src.uop
out.has_rob_entry := true.B
out.sched_idx := src.schedIndex
out.isvec := src.isvec
out.is128bit := src.is128bit
out.vecActive := src.vecActive
out.isnc := true.B
out.data := src.data
out
}
def fromNormalReplaySource(src: LsPipelineBundle): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out.mask := Mux(src.isvec, src.mask, genVWmask(src.vaddr, src.uop.fuOpType(1, 0)))
out.uop := src.uop
out.try_l2l := false.B
out.has_rob_entry := true.B
out.rep_carry := src.replayCarry
out.mshrid := src.mshrid
out.frm_mabuf := false.B
out.isFirstIssue := false.B
out.fast_rep := false.B
out.ld_rep := true.B
out.l2l_fwd := false.B
out.prf := LSUOpType.isPrefetch(src.uop.fuOpType) && !src.isvec
out.prf_rd := src.uop.fuOpType === LSUOpType.prefetch_r
out.prf_wr := src.uop.fuOpType === LSUOpType.prefetch_w
out.prf_i := false.B
out.sched_idx := src.schedIndex
out.isvec := src.isvec
out.is128bit := src.is128bit
out.uop_unit_stride_fof := src.uop_unit_stride_fof
out.reg_offset := src.reg_offset
out.vecActive := src.vecActive
out.is_first_ele := src.is_first_ele
out.usSecondInv := src.usSecondInv
out.mbIndex := src.mbIndex
out.elemIdx := src.elemIdx
out.elemIdxInsideVd := src.elemIdxInsideVd
out.alignedType := src.alignedType
out
}
// TODO: implement vector prefetch
def fromPrefetchSource(src: L1PrefetchReq): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out.mask := 0.U
out.uop := DontCare
out.try_l2l := false.B
out.has_rob_entry := false.B
out.rep_carry := 0.U.asTypeOf(out.rep_carry)
out.mshrid := 0.U
out.frm_mabuf := false.B
out.isFirstIssue := false.B
out.fast_rep := false.B
out.ld_rep := false.B
out.l2l_fwd := false.B
out.prf := true.B
out.prf_rd := !src.is_store
out.prf_wr := src.is_store
out.prf_i := false.B
out.sched_idx := 0.U
out
}
def fromVecIssueSource(src: VecPipeBundle): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out.mask := src.mask
out.uop := src.uop
out.try_l2l := false.B
out.has_rob_entry := true.B
// TODO: VLSU, implement replay carry
out.rep_carry := 0.U.asTypeOf(out.rep_carry)
out.mshrid := 0.U
out.frm_mabuf := false.B
// TODO: VLSU, implement first issue
// out.isFirstIssue := src.isFirstIssue
out.fast_rep := false.B
out.ld_rep := false.B
out.l2l_fwd := false.B
out.prf := false.B
out.prf_rd := false.B
out.prf_wr := false.B
out.prf_i := false.B
out.sched_idx := 0.U
// Vector load interface
out.isvec := true.B
// vector loads only access a single element at a time, so 128-bit path is not used for now
out.is128bit := is128Bit(src.alignedType)
out.uop_unit_stride_fof := src.uop_unit_stride_fof
// out.rob_idx_valid := src.rob_idx_valid
// out.inner_idx := src.inner_idx
// out.rob_idx := src.rob_idx
out.reg_offset := src.reg_offset
// out.offset := src.offset
out.vecActive := src.vecActive
out.is_first_ele := src.is_first_ele
// out.flowPtr := src.flowPtr
out.usSecondInv := src.usSecondInv
out.mbIndex := src.mBIndex
out.elemIdx := src.elemIdx
out.elemIdxInsideVd := src.elemIdxInsideVd
out.vecBaseVaddr := src.basevaddr
out.alignedType := src.alignedType
out
}
def fromIntIssueSource(src: MemExuInput): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
val addr = io.ldin.bits.src(0) + SignExt(io.ldin.bits.uop.imm(11, 0), VAddrBits)
out.mask := genVWmask(addr, src.uop.fuOpType(1,0))
out.uop := src.uop
out.try_l2l := false.B
out.has_rob_entry := true.B
out.rep_carry := 0.U.asTypeOf(out.rep_carry)
out.mshrid := 0.U
out.frm_mabuf := false.B
out.isFirstIssue := true.B
out.fast_rep := false.B
out.ld_rep := false.B
out.l2l_fwd := false.B
out.prf := LSUOpType.isPrefetch(src.uop.fuOpType)
out.prf_rd := src.uop.fuOpType === LSUOpType.prefetch_r
out.prf_wr := src.uop.fuOpType === LSUOpType.prefetch_w
out.prf_i := src.uop.fuOpType === LSUOpType.prefetch_i
out.sched_idx := 0.U
out.vecActive := true.B // true for scala load
out
}
// TODO: implement vector l2l
def fromLoadToLoadSource(src: LoadToLoadIO): FlowSource = {
val out = WireInit(0.U.asTypeOf(new FlowSource))
out.mask := genVWmask(0.U, LSUOpType.ld)
// When there's no valid instruction from RS and LSQ, we try the load-to-load forwarding.
// Assume the pointer chasing is always ld.
out.uop.fuOpType := LSUOpType.ld
out.try_l2l := true.B
// we dont care out.isFirstIssue and out.rsIdx and s0_sqIdx in S0 when trying pointchasing
// because these signals will be updated in S1
out.has_rob_entry := false.B
out.mshrid := 0.U
out.frm_mabuf := false.B
out.rep_carry := 0.U.asTypeOf(out.rep_carry)
out.isFirstIssue := true.B
out.fast_rep := false.B
out.ld_rep := false.B
out.l2l_fwd := true.B
out.prf := false.B
out.prf_rd := false.B
out.prf_wr := false.B
out.prf_i := false.B
out.sched_idx := 0.U
out
}
// set default
val s0_src_selector = WireInit(s0_src_valid_vec)
if (!EnableLoadToLoadForward) { s0_src_selector(l2l_fwd_idx) := false.B }
val s0_src_format = Seq(
fromMisAlignBufferSource(io.misalign_ldin.bits),
fromNormalReplaySource(io.replay.bits),
fromFastReplaySource(io.fast_rep_in.bits),
fromMmioSource(io.lsq.uncache.bits),
fromNcSource(io.lsq.nc_ldin.bits),
fromNormalReplaySource(io.replay.bits),
fromPrefetchSource(io.prefetch_req.bits),
fromVecIssueSource(io.vecldin.bits),
fromIntIssueSource(io.ldin.bits),
(if (EnableLoadToLoadForward) fromLoadToLoadSource(io.l2l_fwd_in) else fromNullSource()),
fromPrefetchSource(io.prefetch_req.bits)
)
s0_sel_src := ParallelPriorityMux(s0_src_selector, s0_src_format)
// fast replay and hardware prefetch don't need to query tlb
val int_issue_vaddr = io.ldin.bits.src(0) + SignExt(io.ldin.bits.uop.imm(11, 0), VAddrBits)
val int_vec_vaddr = Mux(s0_src_valid_vec(vec_iss_idx), io.vecldin.bits.vaddr(VAddrBits - 1, 0), int_issue_vaddr)
s0_tlb_vaddr := Mux(
s0_src_valid_vec(mab_idx),
io.misalign_ldin.bits.vaddr,
Mux(
s0_src_valid_vec(super_rep_idx) || s0_src_valid_vec(lsq_rep_idx),
io.replay.bits.vaddr,
int_vec_vaddr
)
)
s0_dcache_vaddr := Mux(
s0_src_select_vec(fast_rep_idx), io.fast_rep_in.bits.vaddr,
Mux(s0_hw_prf_select, io.prefetch_req.bits.getVaddr(),
Mux(s0_src_select_vec(nc_idx), io.lsq.nc_ldin.bits.vaddr, // not for dcache access, but for address alignment check
s0_tlb_vaddr))
)
val s0_alignType = Mux(s0_sel_src.isvec, s0_sel_src.alignedType(1,0), s0_sel_src.uop.fuOpType(1, 0))
val s0_addr_aligned = LookupTree(s0_alignType, List(
"b00".U -> true.B, //b
"b01".U -> (s0_dcache_vaddr(0) === 0.U), //h
"b10".U -> (s0_dcache_vaddr(1, 0) === 0.U), //w
"b11".U -> (s0_dcache_vaddr(2, 0) === 0.U) //d
))
// address align check
XSError(s0_sel_src.isvec && s0_dcache_vaddr(3, 0) =/= 0.U && s0_sel_src.alignedType(2), "unit-stride 128 bit element is not aligned!")
val s0_check_vaddr_low = s0_dcache_vaddr(4, 0)
val s0_check_vaddr_Up_low = LookupTree(s0_alignType, List(
"b00".U -> 0.U,
"b01".U -> 1.U,
"b10".U -> 3.U,
"b11".U -> 7.U
)) + s0_check_vaddr_low
//TODO vec?
val s0_rs_cross16Bytes = s0_check_vaddr_Up_low(4) =/= s0_check_vaddr_low(4)
val s0_misalignWith16Byte = !s0_rs_cross16Bytes && !s0_addr_aligned && !s0_hw_prf_select
val s0_misalignNeedWakeUp = s0_sel_src.frm_mabuf && io.misalign_ldin.bits.misalignNeedWakeUp
val s0_finalSplit = s0_sel_src.frm_mabuf && io.misalign_ldin.bits.isFinalSplit
s0_is128bit := s0_sel_src.is128bit || s0_misalignWith16Byte
// only first issue of int / vec load intructions need to check full vaddr
s0_tlb_fullva := Mux(s0_src_valid_vec(mab_idx),
io.misalign_ldin.bits.fullva,
Mux(s0_src_select_vec(vec_iss_idx),
io.vecldin.bits.vaddr,
Mux(
s0_src_select_vec(int_iss_idx),
io.ldin.bits.src(0) + SignExt(io.ldin.bits.uop.imm(11, 0), XLEN),
s0_dcache_vaddr
)
)
)
s0_tlb_hlv := Mux(
s0_src_valid_vec(mab_idx),
LSUOpType.isHlv(io.misalign_ldin.bits.uop.fuOpType),
Mux(
s0_src_valid_vec(super_rep_idx) || s0_src_valid_vec(lsq_rep_idx),
LSUOpType.isHlv(io.replay.bits.uop.fuOpType),
Mux(
s0_src_valid_vec(int_iss_idx),
LSUOpType.isHlv(io.ldin.bits.uop.fuOpType),
false.B
)
)
)
s0_tlb_hlvx := Mux(
s0_src_valid_vec(mab_idx),
LSUOpType.isHlvx(io.misalign_ldin.bits.uop.fuOpType),
Mux(
s0_src_valid_vec(super_rep_idx) || s0_src_valid_vec(lsq_rep_idx),
LSUOpType.isHlvx(io.replay.bits.uop.fuOpType),
Mux(
s0_src_valid_vec(int_iss_idx),
LSUOpType.isHlvx(io.ldin.bits.uop.fuOpType),
false.B
)
)
)
// accept load flow if dcache ready (tlb is always ready)
// TODO: prefetch need writeback to loadQueueFlag
s0_out := DontCare
s0_out.vaddr := Mux(s0_nc_with_data, s0_sel_src.vaddr, s0_dcache_vaddr)
s0_out.fullva := Mux(s0_sel_src.frm_mabuf, s0_out.vaddr, s0_tlb_fullva)
s0_out.mask := s0_sel_src.mask
s0_out.uop := s0_sel_src.uop
s0_out.isFirstIssue := s0_sel_src.isFirstIssue
s0_out.hasROBEntry := s0_sel_src.has_rob_entry
s0_out.isPrefetch := s0_sel_src.prf
s0_out.isHWPrefetch := s0_hw_prf_select
s0_out.isFastReplay := s0_sel_src.fast_rep
s0_out.isLoadReplay := s0_sel_src.ld_rep
s0_out.isFastPath := s0_sel_src.l2l_fwd
s0_out.mshrid := s0_sel_src.mshrid
s0_out.isvec := s0_sel_src.isvec
s0_out.is128bit := s0_is128bit
s0_out.isFrmMisAlignBuf := s0_sel_src.frm_mabuf
s0_out.uop_unit_stride_fof := s0_sel_src.uop_unit_stride_fof
s0_out.paddr :=
Mux(s0_src_select_vec(nc_idx), io.lsq.nc_ldin.bits.paddr,
Mux(s0_src_select_vec(fast_rep_idx), io.fast_rep_in.bits.paddr,
Mux(s0_src_select_vec(int_iss_idx) && s0_sel_src.prf_i, 0.U,
io.prefetch_req.bits.paddr))) // only for nc, fast_rep, prefetch
s0_out.tlbNoQuery := s0_tlb_no_query
// s0_out.rob_idx_valid := s0_rob_idx_valid
// s0_out.inner_idx := s0_inner_idx
// s0_out.rob_idx := s0_rob_idx
s0_out.reg_offset := s0_sel_src.reg_offset
// s0_out.offset := s0_offset
s0_out.vecActive := s0_sel_src.vecActive
s0_out.usSecondInv := s0_sel_src.usSecondInv
s0_out.is_first_ele := s0_sel_src.is_first_ele
s0_out.elemIdx := s0_sel_src.elemIdx
s0_out.elemIdxInsideVd := s0_sel_src.elemIdxInsideVd
s0_out.alignedType := s0_sel_src.alignedType
s0_out.mbIndex := s0_sel_src.mbIndex
s0_out.vecBaseVaddr := s0_sel_src.vecBaseVaddr
// s0_out.flowPtr := s0_sel_src.flowPtr
s0_out.uop.exceptionVec(loadAddrMisaligned) := (!s0_addr_aligned || s0_sel_src.uop.exceptionVec(loadAddrMisaligned)) && s0_sel_src.vecActive && !s0_misalignWith16Byte
s0_out.isMisalign := (!s0_addr_aligned || s0_sel_src.uop.exceptionVec(loadAddrMisaligned)) && s0_sel_src.vecActive
s0_out.forward_tlDchannel := s0_src_select_vec(super_rep_idx)
when(io.tlb.req.valid && s0_sel_src.isFirstIssue) {
s0_out.uop.debugInfo.tlbFirstReqTime := GTimer()
}.otherwise{
s0_out.uop.debugInfo.tlbFirstReqTime := s0_sel_src.uop.debugInfo.tlbFirstReqTime
}
s0_out.schedIndex := s0_sel_src.sched_idx
//for Svpbmt Nc
s0_out.nc := s0_sel_src.isnc
s0_out.data := s0_sel_src.data
s0_out.misalignWith16Byte := s0_misalignWith16Byte
s0_out.misalignNeedWakeUp := s0_misalignNeedWakeUp
s0_out.isFinalSplit := s0_finalSplit
// load fast replay
io.fast_rep_in.ready := (s0_can_go && io.dcache.req.ready && s0_src_ready_vec(fast_rep_idx))
// mmio
io.lsq.uncache.ready := s0_mmio_fire
io.lsq.nc_ldin.ready := s0_src_ready_vec(nc_idx) && s0_can_go
// load flow source ready
// cache missed load has highest priority
// always accept cache missed load flow from load replay queue
io.replay.ready := (s0_can_go && io.dcache.req.ready && (s0_src_ready_vec(lsq_rep_idx) && !s0_rep_stall || s0_src_select_vec(super_rep_idx)))
// accept load flow from rs when:
// 1) there is no lsq-replayed load
// 2) there is no fast replayed load
// 3) there is no high confidence prefetch request
io.vecldin.ready := s0_can_go && io.dcache.req.ready && s0_src_ready_vec(vec_iss_idx)
io.ldin.ready := s0_can_go && io.dcache.req.ready && s0_src_ready_vec(int_iss_idx)
io.misalign_ldin.ready := s0_can_go && io.dcache.req.ready && s0_src_ready_vec(mab_idx)
// for hw prefetch load flow feedback, to be added later
// io.prefetch_in.ready := s0_hw_prf_select
// dcache replacement extra info
// TODO: should prefetch load update replacement?
io.dcache.replacementUpdated := Mux(s0_src_select_vec(lsq_rep_idx) || s0_src_select_vec(super_rep_idx), io.replay.bits.replacementUpdated, false.B)
// load wakeup
// TODO: vector load wakeup? frm_mabuf wakeup?
val s0_wakeup_selector = Seq(
s0_misalign_wakeup_fire,
s0_src_valid_vec(super_rep_idx),
s0_src_valid_vec(fast_rep_idx),
s0_mmio_fire,
s0_nc_fire,
s0_src_valid_vec(lsq_rep_idx),
s0_src_valid_vec(int_iss_idx)
)
val s0_wakeup_format = Seq(
io.misalign_ldin.bits.uop,
io.replay.bits.uop,
io.fast_rep_in.bits.uop,
io.lsq.uncache.bits.uop,
io.lsq.nc_ldin.bits.uop,
io.replay.bits.uop,
io.ldin.bits.uop,
)
val s0_wakeup_uop = ParallelPriorityMux(s0_wakeup_selector, s0_wakeup_format)
io.wakeup.valid := s0_fire && !s0_sel_src.isvec && !s0_sel_src.frm_mabuf && (
s0_src_valid_vec(super_rep_idx) ||
s0_src_valid_vec(fast_rep_idx) ||
s0_src_valid_vec(lsq_rep_idx) ||
(s0_src_valid_vec(int_iss_idx) && !s0_sel_src.prf &&
!s0_src_valid_vec(vec_iss_idx) && !s0_src_valid_vec(high_pf_idx))
) || s0_mmio_fire || s0_nc_fire || s0_misalign_wakeup_fire
io.wakeup.bits := s0_wakeup_uop
// prefetch.i(Zicbop)
io.ifetchPrefetch.valid := RegNext(s0_src_select_vec(int_iss_idx) && s0_sel_src.prf_i)
io.ifetchPrefetch.bits.vaddr := RegEnable(s0_out.vaddr, 0.U, s0_src_select_vec(int_iss_idx) && s0_sel_src.prf_i)
XSDebug(io.dcache.req.fire,
p"[DCACHE LOAD REQ] pc ${Hexadecimal(s0_sel_src.uop.pc)}, vaddr ${Hexadecimal(s0_dcache_vaddr)}\n"
)
XSDebug(s0_valid,
p"S0: pc ${Hexadecimal(s0_out.uop.pc)}, lId ${Hexadecimal(s0_out.uop.lqIdx.asUInt)}, " +
p"vaddr ${Hexadecimal(s0_out.vaddr)}, mask ${Hexadecimal(s0_out.mask)}\n")
// Pipeline
// --------------------------------------------------------------------------------
// stage 1
// --------------------------------------------------------------------------------
// TLB resp (send paddr to dcache)
val s1_valid = RegInit(false.B)
val s1_in = Wire(new LqWriteBundle)
val s1_out = Wire(new LqWriteBundle)
val s1_kill = Wire(Bool())
val s1_can_go = s2_ready
val s1_fire = s1_valid && !s1_kill && s1_can_go
val s1_vecActive = RegEnable(s0_out.vecActive, true.B, s0_fire)
val s1_nc_with_data = RegNext(s0_nc_with_data)
s1_ready := !s1_valid || s1_kill || s2_ready
when (s0_fire) { s1_valid := true.B }
.elsewhen (s1_fire) { s1_valid := false.B }
.elsewhen (s1_kill) { s1_valid := false.B }
s1_in := RegEnable(s0_out, s0_fire)
val s1_fast_rep_dly_kill = RegEnable(io.fast_rep_in.bits.lateKill, io.fast_rep_in.valid) && s1_in.isFastReplay
val s1_fast_rep_dly_err = RegEnable(io.fast_rep_in.bits.delayedLoadError, io.fast_rep_in.valid) && s1_in.isFastReplay
val s1_l2l_fwd_dly_err = RegEnable(io.l2l_fwd_in.dly_ld_err, io.l2l_fwd_in.valid) && s1_in.isFastPath
val s1_dly_err = s1_fast_rep_dly_err || s1_l2l_fwd_dly_err
val s1_vaddr_hi = Wire(UInt())
val s1_vaddr_lo = Wire(UInt())
val s1_vaddr = Wire(UInt())
val s1_paddr_dup_lsu = Wire(UInt())
val s1_gpaddr_dup_lsu = Wire(UInt())
val s1_paddr_dup_dcache = Wire(UInt())
val s1_exception = ExceptionNO.selectByFu(s1_out.uop.exceptionVec, LduCfg).asUInt.orR // af & pf exception were modified below.
val s1_tlb_miss = io.tlb.resp.bits.miss && io.tlb.resp.valid && s1_valid
val s1_tlb_fast_miss = io.tlb.resp.bits.fastMiss && io.tlb.resp.valid && s1_valid
val s1_tlb_hit = !io.tlb.resp.bits.miss && io.tlb.resp.valid && s1_valid
val s1_pbmt = Mux(s1_tlb_hit, io.tlb.resp.bits.pbmt.head, 0.U(Pbmt.width.W))
val s1_nc = s1_in.nc
val s1_prf = s1_in.isPrefetch
val s1_hw_prf = s1_in.isHWPrefetch
val s1_sw_prf = s1_prf && !s1_hw_prf
val s1_tlb_memidx = io.tlb.resp.bits.memidx
s1_vaddr_hi := s1_in.vaddr(VAddrBits - 1, 6)
s1_vaddr_lo := s1_in.vaddr(5, 0)
s1_vaddr := Cat(s1_vaddr_hi, s1_vaddr_lo)
s1_paddr_dup_lsu := Mux(s1_in.tlbNoQuery, s1_in.paddr, io.tlb.resp.bits.paddr(0))
s1_paddr_dup_dcache := Mux(s1_in.tlbNoQuery, s1_in.paddr, io.tlb.resp.bits.paddr(1))
s1_gpaddr_dup_lsu := Mux(s1_in.isFastReplay, s1_in.paddr, io.tlb.resp.bits.gpaddr(0))
when (s1_tlb_memidx.is_ld && io.tlb.resp.valid && !s1_tlb_miss && s1_tlb_memidx.idx === s1_in.uop.lqIdx.value) {
// printf("load idx = %d\n", s1_tlb_memidx.idx)
s1_out.uop.debugInfo.tlbRespTime := GTimer()
}
io.tlb.req_kill := s1_kill || s1_dly_err
io.tlb.req.bits.pmp_addr := s1_in.paddr
io.tlb.resp.ready := true.B
io.dcache.s1_paddr_dup_lsu <> s1_paddr_dup_lsu
io.dcache.s1_paddr_dup_dcache <> s1_paddr_dup_dcache
io.dcache.s1_kill := s1_kill || s1_dly_err || s1_tlb_miss || s1_exception
io.dcache.s1_kill_data_read := s1_kill || s1_dly_err || s1_tlb_fast_miss
// store to load forwarding
io.sbuffer.valid := s1_valid && !(s1_exception || s1_tlb_miss || s1_kill || s1_dly_err || s1_prf)
io.sbuffer.vaddr := s1_vaddr
io.sbuffer.paddr := s1_paddr_dup_lsu
io.sbuffer.uop := s1_in.uop
io.sbuffer.sqIdx := s1_in.uop.sqIdx
io.sbuffer.mask := s1_in.mask
io.sbuffer.pc := s1_in.uop.pc // FIXME: remove it
io.ubuffer.valid := s1_valid && s1_nc_with_data && !(s1_exception || s1_tlb_miss || s1_kill || s1_dly_err || s1_prf)
io.ubuffer.vaddr := s1_vaddr
io.ubuffer.paddr := s1_paddr_dup_lsu
io.ubuffer.uop := s1_in.uop
io.ubuffer.sqIdx := s1_in.uop.sqIdx
io.ubuffer.mask := s1_in.mask
io.ubuffer.pc := s1_in.uop.pc // FIXME: remove it
io.lsq.forward.valid := s1_valid && !(s1_exception || s1_tlb_miss || s1_kill || s1_dly_err || s1_prf)
io.lsq.forward.vaddr := s1_vaddr
io.lsq.forward.paddr := s1_paddr_dup_lsu
io.lsq.forward.uop := s1_in.uop
io.lsq.forward.sqIdx := s1_in.uop.sqIdx
io.lsq.forward.sqIdxMask := 0.U
io.lsq.forward.mask := s1_in.mask
io.lsq.forward.pc := s1_in.uop.pc // FIXME: remove it
// st-ld violation query
// if store unit is 128-bits memory access, need match 128-bit
private val s1_isMatch128 = io.stld_nuke_query.map(x => (x.bits.matchLine || ((s1_in.isvec || s1_in.misalignWith16Byte) && s1_in.is128bit)))
val s1_nuke_paddr_match = VecInit((0 until StorePipelineWidth).zip(s1_isMatch128).map{case (w, s) => {Mux(s,
s1_paddr_dup_lsu(PAddrBits-1, 4) === io.stld_nuke_query(w).bits.paddr(PAddrBits-1, 4),
s1_paddr_dup_lsu(PAddrBits-1, 3) === io.stld_nuke_query(w).bits.paddr(PAddrBits-1, 3))}})
val s1_nuke = VecInit((0 until StorePipelineWidth).map(w => {
io.stld_nuke_query(w).valid && // query valid
isAfter(s1_in.uop.robIdx, io.stld_nuke_query(w).bits.robIdx) && // older store
s1_nuke_paddr_match(w) && // paddr match
(s1_in.mask & io.stld_nuke_query(w).bits.mask).orR // data mask contain
})).asUInt.orR && !s1_tlb_miss
s1_out := s1_in
s1_out.vaddr := s1_vaddr
s1_out.fullva := Mux(s1_in.isFrmMisAlignBuf, s1_in.vaddr, io.tlb.resp.bits.fullva)
s1_out.vaNeedExt := io.tlb.resp.bits.excp(0).vaNeedExt
s1_out.isHyper := io.tlb.resp.bits.excp(0).isHyper
s1_out.paddr := s1_paddr_dup_lsu
s1_out.gpaddr := s1_gpaddr_dup_lsu
s1_out.isForVSnonLeafPTE := io.tlb.resp.bits.isForVSnonLeafPTE
s1_out.tlbMiss := s1_tlb_miss
s1_out.ptwBack := io.tlb.resp.bits.ptwBack
s1_out.rep_info.debug := s1_in.uop.debugInfo
s1_out.rep_info.nuke := s1_nuke && !s1_sw_prf
s1_out.delayedLoadError := s1_dly_err
s1_out.nc := (s1_nc || Pbmt.isNC(s1_pbmt)) && !s1_prf
s1_out.mmio := Pbmt.isIO(s1_pbmt)
when (!s1_dly_err) {
// current ori test will cause the case of ldest == 0, below will be modifeid in the future.
// af & pf exception were modified
// if is tlbNoQuery request, don't trigger exception from tlb resp
s1_out.uop.exceptionVec(loadPageFault) := io.tlb.resp.bits.excp(0).pf.ld && s1_vecActive && !s1_tlb_miss && !s1_in.tlbNoQuery
s1_out.uop.exceptionVec(loadGuestPageFault) := io.tlb.resp.bits.excp(0).gpf.ld && !s1_tlb_miss && !s1_in.tlbNoQuery
s1_out.uop.exceptionVec(loadAccessFault) := io.tlb.resp.bits.excp(0).af.ld && s1_vecActive && !s1_tlb_miss && !s1_in.tlbNoQuery
when (RegNext(io.tlb.req.bits.checkfullva) &&
(s1_out.uop.exceptionVec(loadPageFault) ||
s1_out.uop.exceptionVec(loadGuestPageFault) ||
s1_out.uop.exceptionVec(loadAccessFault))) {
s1_out.uop.exceptionVec(loadAddrMisaligned) := false.B
s1_out.isMisalign := false.B
}
} .otherwise {
s1_out.uop.exceptionVec(loadPageFault) := false.B
s1_out.uop.exceptionVec(loadGuestPageFault) := false.B
s1_out.uop.exceptionVec(loadAddrMisaligned) := false.B
s1_out.uop.exceptionVec(loadAccessFault) := false.B
s1_out.uop.exceptionVec(hardwareError) := s1_dly_err && s1_vecActive
s1_out.isMisalign := false.B
}
// pointer chasing
val s1_try_ptr_chasing = GatedValidRegNext(s0_do_try_ptr_chasing, false.B)
val s1_ptr_chasing_vaddr = RegEnable(s0_ptr_chasing_vaddr, s0_do_try_ptr_chasing)
val s1_fu_op_type_not_ld = WireInit(false.B)
val s1_not_fast_match = WireInit(false.B)
val s1_addr_mismatch = WireInit(false.B)
val s1_addr_misaligned = WireInit(false.B)
val s1_fast_mismatch = WireInit(false.B)
val s1_ptr_chasing_canceled = WireInit(false.B)
val s1_cancel_ptr_chasing = WireInit(false.B)
val s1_redirect_reg = Wire(Valid(new Redirect))
s1_redirect_reg.bits := RegEnable(io.redirect.bits, io.redirect.valid)
s1_redirect_reg.valid := GatedValidRegNext(io.redirect.valid)
s1_kill := s1_fast_rep_dly_kill ||
s1_cancel_ptr_chasing ||
s1_in.uop.robIdx.needFlush(io.redirect) ||
(s1_in.uop.robIdx.needFlush(s1_redirect_reg) && !GatedValidRegNext(s0_try_ptr_chasing)) ||
RegEnable(s0_kill, false.B, io.ldin.valid ||
io.vecldin.valid || io.replay.valid ||
io.l2l_fwd_in.valid || io.fast_rep_in.valid ||
io.misalign_ldin.valid || io.lsq.nc_ldin.valid
)
if (EnableLoadToLoadForward) {
// Sometimes, we need to cancel the load-load forwarding.
// These can be put at S0 if timing is bad at S1.
// Case 0: CACHE_SET(base + offset) != CACHE_SET(base) (lowest 6-bit addition has an overflow)
s1_addr_mismatch := s1_ptr_chasing_vaddr(6) ||
RegEnable(io.ld_fast_imm(11, 6).orR, s0_do_try_ptr_chasing)
// Case 1: the address is not 64-bit aligned or the fuOpType is not LD
s1_addr_misaligned := s1_ptr_chasing_vaddr(2, 0).orR
s1_fu_op_type_not_ld := io.ldin.bits.uop.fuOpType =/= LSUOpType.ld
// Case 2: this load-load uop is cancelled
s1_ptr_chasing_canceled := !io.ldin.valid
// Case 3: fast mismatch
s1_fast_mismatch := RegEnable(!io.ld_fast_match, s0_do_try_ptr_chasing)
when (s1_try_ptr_chasing) {
s1_cancel_ptr_chasing := s1_addr_mismatch ||
s1_addr_misaligned ||
s1_fu_op_type_not_ld ||
s1_ptr_chasing_canceled ||
s1_fast_mismatch
s1_in.uop := io.ldin.bits.uop
s1_in.isFirstIssue := io.ldin.bits.isFirstIssue
s1_vaddr_lo := s1_ptr_chasing_vaddr(5, 0)
s1_paddr_dup_lsu := Cat(io.tlb.resp.bits.paddr(0)(PAddrBits - 1, 6), s1_vaddr_lo)
s1_paddr_dup_dcache := Cat(io.tlb.resp.bits.paddr(0)(PAddrBits - 1, 6), s1_vaddr_lo)
// recored tlb time when get the data to ensure the correctness of the latency calculation (although it should not record in here, because it does not use tlb)
s1_in.uop.debugInfo.tlbFirstReqTime := GTimer()
s1_in.uop.debugInfo.tlbRespTime := GTimer()
}
when (!s1_cancel_ptr_chasing) {
s0_ptr_chasing_canceled := s1_try_ptr_chasing &&
!io.replay.fire && !io.fast_rep_in.fire &&
!(s0_src_valid_vec(high_pf_idx) && io.canAcceptHighConfPrefetch) &&
!io.misalign_ldin.fire &&
!io.lsq.nc_ldin.valid
when (s1_try_ptr_chasing) {
io.ldin.ready := true.B
}
}
}
// pre-calcuate sqIdx mask in s0, then send it to lsq in s1 for forwarding
val s1_sqIdx_mask = RegEnable(UIntToMask(s0_out.uop.sqIdx.value, StoreQueueSize), s0_fire)
// to enable load-load, sqIdxMask must be calculated based on ldin.uop
// If the timing here is not OK, load-load forwarding has to be disabled.
// Or we calculate sqIdxMask at RS??
io.lsq.forward.sqIdxMask := s1_sqIdx_mask
if (EnableLoadToLoadForward) {
when (s1_try_ptr_chasing) {
io.lsq.forward.sqIdxMask := UIntToMask(io.ldin.bits.uop.sqIdx.value, StoreQueueSize)
}
}
io.forward_mshr.valid := s1_valid && s1_out.forward_tlDchannel
io.forward_mshr.mshrid := s1_out.mshrid
io.forward_mshr.paddr := s1_out.paddr
val loadTrigger = Module(new MemTrigger(MemType.LOAD))
loadTrigger.io.fromCsrTrigger.tdataVec := io.fromCsrTrigger.tdataVec
loadTrigger.io.fromCsrTrigger.tEnableVec := io.fromCsrTrigger.tEnableVec
loadTrigger.io.fromCsrTrigger.triggerCanRaiseBpExp := io.fromCsrTrigger.triggerCanRaiseBpExp
loadTrigger.io.fromCsrTrigger.debugMode := io.fromCsrTrigger.debugMode
loadTrigger.io.fromLoadStore.vaddr := s1_vaddr
loadTrigger.io.fromLoadStore.isVectorUnitStride := s1_in.isvec && s1_in.is128bit
loadTrigger.io.fromLoadStore.mask := s1_in.mask
val s1_trigger_action = loadTrigger.io.toLoadStore.triggerAction
val s1_trigger_debug_mode = TriggerAction.isDmode(s1_trigger_action)
val s1_trigger_breakpoint = TriggerAction.isExp(s1_trigger_action)
s1_out.uop.trigger := s1_trigger_action
s1_out.uop.exceptionVec(breakPoint) := s1_trigger_breakpoint
s1_out.vecVaddrOffset := Mux(
s1_trigger_debug_mode || s1_trigger_breakpoint,
loadTrigger.io.toLoadStore.triggerVaddr - s1_in.vecBaseVaddr,
s1_in.vaddr + genVFirstUnmask(s1_in.mask).asUInt - s1_in.vecBaseVaddr
)
s1_out.vecTriggerMask := Mux(s1_trigger_debug_mode || s1_trigger_breakpoint, loadTrigger.io.toLoadStore.triggerMask, 0.U)
XSDebug(s1_valid,
p"S1: pc ${Hexadecimal(s1_out.uop.pc)}, lId ${Hexadecimal(s1_out.uop.lqIdx.asUInt)}, tlb_miss ${io.tlb.resp.bits.miss}, " +
p"paddr ${Hexadecimal(s1_out.paddr)}, mmio ${s1_out.mmio}\n")
// Pipeline
// --------------------------------------------------------------------------------
// stage 2
// --------------------------------------------------------------------------------
// s2: DCache resp
val s2_valid = RegInit(false.B)
val s2_in = Wire(new LqWriteBundle)
val s2_out = Wire(new LqWriteBundle)
val s2_kill = Wire(Bool())
val s2_can_go = s3_ready
val s2_fire = s2_valid && !s2_kill && s2_can_go
val s2_vecActive = RegEnable(s1_out.vecActive, true.B, s1_fire)
val s2_isvec = RegEnable(s1_out.isvec, false.B, s1_fire)
val s2_data_select = genRdataOH(s2_out.uop)
val s2_data_select_by_offset = genDataSelectByOffset(s2_out.paddr(3, 0))
val s2_frm_mabuf = s2_in.isFrmMisAlignBuf
val s2_pbmt = RegEnable(s1_pbmt, s1_fire)
val s2_trigger_debug_mode = RegEnable(s1_trigger_debug_mode, false.B, s1_fire)
val s2_nc_with_data = RegNext(s1_nc_with_data)
val s2_mmio_req = Wire(Valid(new MemExuOutput))
s2_mmio_req.valid := RegNextN(io.lsq.uncache.fire, 2, Some(false.B))
s2_mmio_req.bits := RegNextN(io.lsq.uncache.bits, 2)
val s3_misalign_wakeup_req = Wire(Valid(new LqWriteBundle))
val s3_misalign_wakeup_req_bits = WireInit(0.U.asTypeOf(new LqWriteBundle))
connectSamePort(s3_misalign_wakeup_req_bits, io.misalign_ldin.bits)
s3_misalign_wakeup_req.valid := RegNextN(io.misalign_ldin.bits.misalignNeedWakeUp && io.misalign_ldin.fire, 3, Some(false.B))
s3_misalign_wakeup_req.bits := RegNextN(s3_misalign_wakeup_req_bits, 3)
s2_kill := s2_in.uop.robIdx.needFlush(io.redirect)
s2_ready := !s2_valid || s2_kill || s3_ready
when (s1_fire) { s2_valid := true.B }
.elsewhen (s2_fire) { s2_valid := false.B }
.elsewhen (s2_kill) { s2_valid := false.B }
s2_in := RegEnable(s1_out, s1_fire)
val s2_pmp = WireInit(io.pmp)
val s2_isMisalign = WireInit(s2_in.isMisalign)
val s2_prf = s2_in.isPrefetch
val s2_hw_prf = s2_in.isHWPrefetch
val s2_exception_vec = WireInit(s2_in.uop.exceptionVec)
// exception that may cause load addr to be invalid / illegal
// if such exception happen, that inst and its exception info
// will be force writebacked to rob
// The response signal of `pmp/pma` is credible only after the physical address is actually generated.
// Therefore, the response signals of pmp/pma generated after an address translation has produced an `access fault` or a `page fault` are completely unreliable.
val s2_un_access_exception = s2_vecActive && (
s2_in.uop.exceptionVec(loadAccessFault) ||
s2_in.uop.exceptionVec(loadPageFault) ||
s2_in.uop.exceptionVec(loadGuestPageFault)
)
// This real physical address is located in uncache space.
val s2_actually_uncache = !s2_in.tlbMiss && !s2_un_access_exception && Pbmt.isPMA(s2_pbmt) && s2_pmp.mmio || s2_in.nc || s2_in.mmio
val s2_uncache = !s2_prf && s2_actually_uncache
val s2_memBackTypeMM = !s2_pmp.mmio
when (!s2_in.delayedLoadError) {
s2_exception_vec(loadAccessFault) := s2_vecActive && (
s2_in.uop.exceptionVec(loadAccessFault) ||
s2_pmp.ld ||
s2_isvec && s2_uncache ||
io.dcache.resp.bits.tag_error && GatedValidRegNext(io.csrCtrl.cache_error_enable)
)
}
// soft prefetch will not trigger any exception (but ecc error interrupt may
// be triggered)
val s2_tlb_unrelated_exceps = s2_in.uop.exceptionVec(breakPoint)
when (!s2_in.delayedLoadError && (s2_prf || s2_in.tlbMiss && !s2_tlb_unrelated_exceps)) {
s2_exception_vec := 0.U.asTypeOf(s2_exception_vec.cloneType)
s2_isMisalign := false.B
}
val s2_exception = s2_vecActive &&
(s2_trigger_debug_mode || ExceptionNO.selectByFu(s2_exception_vec, LduCfg).asUInt.orR)
val s2_mis_align = s2_valid && GatedValidRegNext(io.csrCtrl.hd_misalign_ld_enable) &&
s2_out.isMisalign && !s2_in.misalignWith16Byte && !s2_exception_vec(breakPoint) && !s2_trigger_debug_mode && !s2_uncache
val (s2_fwd_frm_d_chan, s2_fwd_data_frm_d_chan, s2_d_corrupt) = io.tl_d_channel.forward(s1_valid && s1_out.forward_tlDchannel, s1_out.mshrid, s1_out.paddr)
val (s2_fwd_data_valid, s2_fwd_frm_mshr, s2_fwd_data_frm_mshr, s2_mshr_corrupt) = io.forward_mshr.forward()
val s2_fwd_frm_d_chan_or_mshr = s2_fwd_data_valid && (s2_fwd_frm_d_chan || s2_fwd_frm_mshr)
// writeback access fault caused by ecc error / bus error
// * ecc data error is slow to generate, so we will not use it until load stage 3
// * in load stage 3, an extra signal io.load_error will be used to
// * if pbmt =/= 0, mmio is up to pbmt; otherwise, it's up to pmp
val s2_tlb_hit = RegNext(s1_tlb_hit)
val s2_mmio = !s2_prf &&
!s2_exception && !s2_in.tlbMiss &&
Mux(Pbmt.isUncache(s2_pbmt), s2_in.mmio, s2_tlb_hit && s2_pmp.mmio)
val s2_full_fwd = Wire(Bool())
val s2_mem_amb = s2_in.uop.storeSetHit &&
io.lsq.forward.addrInvalid && RegNext(io.lsq.forward.valid)
val s2_tlb_miss = s2_in.tlbMiss
val s2_fwd_fail = io.lsq.forward.dataInvalid && RegNext(io.lsq.forward.valid)
val s2_dcache_miss = io.dcache.resp.bits.miss &&
!s2_fwd_frm_d_chan_or_mshr &&
!s2_full_fwd && !s2_in.nc
val s2_mq_nack = io.dcache.s2_mq_nack &&
!s2_fwd_frm_d_chan_or_mshr &&
!s2_full_fwd && !s2_in.nc
val s2_bank_conflict = io.dcache.s2_bank_conflict &&
!s2_fwd_frm_d_chan_or_mshr &&
!s2_full_fwd && !s2_in.nc
val s2_wpu_pred_fail = io.dcache.s2_wpu_pred_fail &&
!s2_fwd_frm_d_chan_or_mshr &&
!s2_full_fwd && !s2_in.nc
val s2_rar_nack = io.lsq.ldld_nuke_query.req.valid &&
!io.lsq.ldld_nuke_query.req.ready
val s2_raw_nack = io.lsq.stld_nuke_query.req.valid &&
!io.lsq.stld_nuke_query.req.ready
// st-ld violation query
// NeedFastRecovery Valid when
// 1. Fast recovery query request Valid.
// 2. Load instruction is younger than requestors(store instructions).
// 3. Physical address match.
// 4. Data contains.
private val s2_isMatch128 = io.stld_nuke_query.map(x => (x.bits.matchLine || ((s2_in.isvec || s2_in.misalignWith16Byte) && s2_in.is128bit)))
val s2_nuke_paddr_match = VecInit((0 until StorePipelineWidth).zip(s2_isMatch128).map{case (w, s) => {Mux(s,
s2_in.paddr(PAddrBits-1, 4) === io.stld_nuke_query(w).bits.paddr(PAddrBits-1, 4),
s2_in.paddr(PAddrBits-1, 3) === io.stld_nuke_query(w).bits.paddr(PAddrBits-1, 3))}})
val s2_nuke = VecInit((0 until StorePipelineWidth).map(w => {
io.stld_nuke_query(w).valid && // query valid
isAfter(s2_in.uop.robIdx, io.stld_nuke_query(w).bits.robIdx) && // older store
s2_nuke_paddr_match(w) && // paddr match
(s2_in.mask & io.stld_nuke_query(w).bits.mask).orR // data mask contain
})).asUInt.orR && !s2_tlb_miss || s2_in.rep_info.nuke
val s2_cache_handled = io.dcache.resp.bits.handled
//if it is NC with data, it should handle the replayed situation.
//else s2_uncache will enter uncache buffer.
val s2_troublem = !s2_exception &&
(!s2_uncache || s2_nc_with_data) &&
!s2_prf &&
!s2_in.delayedLoadError
io.dcache.resp.ready := true.B
val s2_dcache_should_resp = !(s2_in.tlbMiss || s2_exception || s2_in.delayedLoadError || s2_uncache || s2_prf)
assert(!(s2_valid && (s2_dcache_should_resp && !io.dcache.resp.valid)), "DCache response got lost")
// fast replay require
val s2_dcache_fast_rep = (s2_mq_nack || !s2_dcache_miss && (s2_bank_conflict || s2_wpu_pred_fail))
val s2_nuke_fast_rep = !s2_mq_nack &&
!s2_dcache_miss &&
!s2_bank_conflict &&
!s2_wpu_pred_fail &&
s2_nuke
val s2_fast_rep = !s2_in.isFastReplay &&
!s2_mem_amb &&
!s2_tlb_miss &&
!s2_fwd_fail &&
(s2_dcache_fast_rep || s2_nuke_fast_rep) &&
s2_troublem
// need allocate new entry
val s2_can_query = !(s2_dcache_fast_rep || s2_nuke) && s2_troublem
val s2_data_fwded = s2_dcache_miss && s2_full_fwd
// For misaligned, we will keep the misaligned exception at S2 and before.
// Here a judgement is made as to whether a misaligned exception needs to actually be generated.
// We will generate misaligned exceptions at mmio.
val s2_real_exceptionVec = WireInit(s2_exception_vec)
s2_real_exceptionVec(loadAddrMisaligned) := (s2_out.isMisalign || s2_out.isFrmMisAlignBuf) && s2_uncache
s2_real_exceptionVec(loadAccessFault) := s2_exception_vec(loadAccessFault) ||
s2_fwd_frm_d_chan && s2_d_corrupt ||
s2_fwd_data_valid && s2_fwd_frm_mshr && s2_mshr_corrupt
val s2_real_exception = s2_vecActive &&
(s2_trigger_debug_mode || ExceptionNO.selectByFu(s2_real_exceptionVec, LduCfg).asUInt.orR)
val s2_fwd_vp_match_invalid = io.lsq.forward.matchInvalid || io.sbuffer.matchInvalid || io.ubuffer.matchInvalid
val s2_vp_match_fail = s2_fwd_vp_match_invalid && s2_troublem
val s2_safe_wakeup = !s2_out.rep_info.need_rep && !s2_mmio && (!s2_in.nc || s2_nc_with_data) && !s2_mis_align && !s2_real_exception // don't need to replay and is not a mmio\misalign no data
val s2_safe_writeback = s2_real_exception || s2_safe_wakeup || s2_vp_match_fail
// ld-ld violation require
/**
* In order to ensure timing, the RAR enqueue conditions need to be compromised, worst source of timing from pmp and missQueue.
* * if LoadQueueRARSize == VirtualLoadQueueSize, just need to exclude prefetching.
* * if LoadQueueRARSize < VirtualLoadQueueSize, need to consider the situation of s2_can_query
*/
if (LoadQueueRARSize == VirtualLoadQueueSize) {
io.lsq.ldld_nuke_query.req.valid := s2_valid && !s2_prf
} else {
io.lsq.ldld_nuke_query.req.valid := s2_valid && s2_can_query
}
io.lsq.ldld_nuke_query.req.bits.uop := s2_in.uop
io.lsq.ldld_nuke_query.req.bits.mask := s2_in.mask
io.lsq.ldld_nuke_query.req.bits.paddr := s2_in.paddr
io.lsq.ldld_nuke_query.req.bits.data_valid := Mux(s2_full_fwd || s2_fwd_data_valid || s2_nc_with_data, true.B, !s2_dcache_miss)
io.lsq.ldld_nuke_query.req.bits.is_nc := s2_nc_with_data
// st-ld violation require
io.lsq.stld_nuke_query.req.valid := s2_valid && s2_can_query
io.lsq.stld_nuke_query.req.bits.uop := s2_in.uop
io.lsq.stld_nuke_query.req.bits.mask := s2_in.mask
io.lsq.stld_nuke_query.req.bits.paddr := s2_in.paddr
io.lsq.stld_nuke_query.req.bits.data_valid := Mux(s2_full_fwd || s2_fwd_data_valid || s2_nc_with_data, true.B, !s2_dcache_miss)
io.lsq.stld_nuke_query.req.bits.is_nc := s2_nc_with_data
// merge forward result
// lsq has higher priority than sbuffer
val s2_fwd_mask = Wire(Vec((VLEN/8), Bool()))
val s2_fwd_data = Wire(Vec((VLEN/8), UInt(8.W)))
s2_full_fwd := ((~s2_fwd_mask.asUInt).asUInt & s2_in.mask) === 0.U && !io.lsq.forward.dataInvalid
// generate XLEN/8 Muxs
for (i <- 0 until VLEN / 8) {
s2_fwd_mask(i) := io.lsq.forward.forwardMask(i) || io.sbuffer.forwardMask(i) || io.ubuffer.forwardMask(i)
s2_fwd_data(i) :=
Mux(io.lsq.forward.forwardMask(i), io.lsq.forward.forwardData(i),
Mux(s2_nc_with_data, io.ubuffer.forwardData(i),
io.sbuffer.forwardData(i)))
}
XSDebug(s2_fire, "[FWD LOAD RESP] pc %x fwd %x(%b) + %x(%b)\n",
s2_in.uop.pc,
io.lsq.forward.forwardData.asUInt, io.lsq.forward.forwardMask.asUInt,
s2_in.forwardData.asUInt, s2_in.forwardMask.asUInt
)
//
s2_out := s2_in
s2_out.uop.fpWen := s2_in.uop.fpWen
s2_out.nc := s2_in.nc
s2_out.mmio := s2_mmio
s2_out.memBackTypeMM := s2_memBackTypeMM
s2_out.isMisalign := s2_isMisalign
s2_out.uop.flushPipe := false.B
s2_out.uop.exceptionVec := s2_real_exceptionVec
s2_out.forwardMask := s2_fwd_mask
s2_out.forwardData := s2_fwd_data
s2_out.handledByMSHR := s2_cache_handled
s2_out.miss := s2_dcache_miss && s2_troublem
s2_out.feedbacked := io.feedback_fast.valid
s2_out.uop.vpu.vstart := Mux(s2_in.isLoadReplay || s2_in.isFastReplay, s2_in.uop.vpu.vstart, s2_in.vecVaddrOffset >> s2_in.uop.vpu.veew)
// Generate replay signal caused by:
// * st-ld violation check
// * tlb miss
// * dcache replay
// * forward data invalid
// * dcache miss
s2_out.rep_info.mem_amb := s2_mem_amb && s2_troublem
s2_out.rep_info.tlb_miss := s2_tlb_miss && s2_troublem
s2_out.rep_info.fwd_fail := s2_fwd_fail && s2_troublem
s2_out.rep_info.dcache_rep := s2_mq_nack && s2_troublem
s2_out.rep_info.dcache_miss := s2_dcache_miss && s2_troublem
s2_out.rep_info.bank_conflict := s2_bank_conflict && s2_troublem
s2_out.rep_info.wpu_fail := s2_wpu_pred_fail && s2_troublem
s2_out.rep_info.rar_nack := s2_rar_nack && s2_troublem
s2_out.rep_info.raw_nack := s2_raw_nack && s2_troublem
s2_out.rep_info.nuke := s2_nuke && s2_troublem
s2_out.rep_info.full_fwd := s2_data_fwded
s2_out.rep_info.data_inv_sq_idx := io.lsq.forward.dataInvalidSqIdx
s2_out.rep_info.addr_inv_sq_idx := io.lsq.forward.addrInvalidSqIdx
s2_out.rep_info.rep_carry := io.dcache.resp.bits.replayCarry
s2_out.rep_info.mshr_id := io.dcache.resp.bits.mshr_id
s2_out.rep_info.last_beat := s2_in.paddr(log2Up(refillBytes))
s2_out.rep_info.debug := s2_in.uop.debugInfo
s2_out.rep_info.tlb_id := io.tlb_hint.id
s2_out.rep_info.tlb_full := io.tlb_hint.full
// if forward fail, replay this inst from fetch
val debug_fwd_fail_rep = s2_fwd_fail && !s2_troublem && !s2_in.tlbMiss
// if ld-ld violation is detected, replay from this inst from fetch
val debug_ldld_nuke_rep = false.B // s2_ldld_violation && !s2_mmio && !s2_is_prefetch && !s2_in.tlbMiss
// to be removed
io.feedback_fast.valid := false.B
io.feedback_fast.bits.hit := false.B
io.feedback_fast.bits.flushState := s2_in.ptwBack
io.feedback_fast.bits.robIdx := s2_in.uop.robIdx
io.feedback_fast.bits.sqIdx := s2_in.uop.sqIdx
io.feedback_fast.bits.lqIdx := s2_in.uop.lqIdx
io.feedback_fast.bits.sourceType := RSFeedbackType.lrqFull
io.feedback_fast.bits.dataInvalidSqIdx := DontCare
io.ldCancel.ld1Cancel := false.B
// fast wakeup
val s1_fast_uop_valid = WireInit(false.B)
s1_fast_uop_valid :=
!io.dcache.s1_disable_fast_wakeup &&
s1_valid &&
!s1_kill &&
!io.tlb.resp.bits.miss &&
!io.lsq.forward.dataInvalidFast
io.fast_uop.valid := GatedValidRegNext(s1_fast_uop_valid) && (s2_valid && !s2_out.rep_info.need_rep && !s2_uncache && !(s2_prf && !s2_hw_prf)) && !s2_isvec && !s2_frm_mabuf
io.fast_uop.bits := RegEnable(s1_out.uop, s1_fast_uop_valid)
//
io.s2_ptr_chasing := RegEnable(s1_try_ptr_chasing && !s1_cancel_ptr_chasing, false.B, s1_fire)
// RegNext prefetch train for better timing
// ** Now, prefetch train is valid at load s3 **
val s2_prefetch_train_valid = WireInit(false.B)
s2_prefetch_train_valid := s2_valid && !s2_actually_uncache && (!s2_in.tlbMiss || s2_hw_prf)
io.prefetch_train.valid := GatedValidRegNext(s2_prefetch_train_valid)
io.prefetch_train.bits.fromLsPipelineBundle(s2_in, latch = true, enable = s2_prefetch_train_valid)
io.prefetch_train.bits.miss := RegEnable(io.dcache.resp.bits.miss, s2_prefetch_train_valid) // TODO: use trace with bank conflict?
io.prefetch_train.bits.meta_prefetch := RegEnable(io.dcache.resp.bits.meta_prefetch, s2_prefetch_train_valid)
io.prefetch_train.bits.meta_access := RegEnable(io.dcache.resp.bits.meta_access, s2_prefetch_train_valid)
io.prefetch_train.bits.isFinalSplit := false.B
io.prefetch_train.bits.misalignWith16Byte := false.B
io.prefetch_train.bits.misalignNeedWakeUp := false.B
io.prefetch_train.bits.updateAddrValid := false.B
io.prefetch_train.bits.isMisalign := false.B
io.prefetch_train.bits.hasException := false.B
io.s1_prefetch_spec := s1_fire
io.s2_prefetch_spec := s2_prefetch_train_valid
val s2_prefetch_train_l1_valid = WireInit(false.B)
s2_prefetch_train_l1_valid := s2_valid && !s2_actually_uncache
io.prefetch_train_l1.valid := GatedValidRegNext(s2_prefetch_train_l1_valid)
io.prefetch_train_l1.bits.fromLsPipelineBundle(s2_in, latch = true, enable = s2_prefetch_train_l1_valid)
io.prefetch_train_l1.bits.miss := RegEnable(io.dcache.resp.bits.miss, s2_prefetch_train_l1_valid)
io.prefetch_train_l1.bits.meta_prefetch := RegEnable(io.dcache.resp.bits.meta_prefetch, s2_prefetch_train_l1_valid)
io.prefetch_train_l1.bits.meta_access := RegEnable(io.dcache.resp.bits.meta_access, s2_prefetch_train_l1_valid)
io.prefetch_train_l1.bits.isFinalSplit := false.B
io.prefetch_train_l1.bits.misalignWith16Byte := false.B
io.prefetch_train_l1.bits.misalignNeedWakeUp := false.B
io.prefetch_train_l1.bits.updateAddrValid := false.B
io.prefetch_train_l1.bits.hasException := false.B
io.prefetch_train_l1.bits.isMisalign := false.B
if (env.FPGAPlatform){
io.dcache.s0_pc := DontCare
io.dcache.s1_pc := DontCare
io.dcache.s2_pc := DontCare
}else{
io.dcache.s0_pc := s0_out.uop.pc
io.dcache.s1_pc := s1_out.uop.pc
io.dcache.s2_pc := s2_out.uop.pc
}
io.dcache.s2_kill := s2_pmp.ld || s2_pmp.st || s2_actually_uncache || s2_kill
val s1_ld_left_fire = s1_valid && !s1_kill && s2_ready
val s2_ld_valid_dup = RegInit(0.U(6.W))
s2_ld_valid_dup := 0x0.U(6.W)
when (s1_ld_left_fire && !s1_out.isHWPrefetch) { s2_ld_valid_dup := 0x3f.U(6.W) }
when (s1_kill || s1_out.isHWPrefetch) { s2_ld_valid_dup := 0x0.U(6.W) }
assert(RegNext((s2_valid === s2_ld_valid_dup(0)) || RegNext(s1_out.isHWPrefetch)))
// Pipeline
// --------------------------------------------------------------------------------
// stage 3
// --------------------------------------------------------------------------------
// writeback and update load queue
val s3_valid = GatedValidRegNext(s2_valid && !s2_out.isHWPrefetch && !s2_out.uop.robIdx.needFlush(io.redirect))
val s3_in = RegEnable(s2_out, s2_fire)
val s3_out = Wire(Valid(new MemExuOutput))
val s3_dcache_rep = RegEnable(s2_dcache_fast_rep && s2_troublem, false.B, s2_fire)
val s3_ld_valid_dup = RegEnable(s2_ld_valid_dup, s2_fire)
val s3_fast_rep = Wire(Bool())
val s3_nc_with_data = RegNext(s2_nc_with_data)
val s3_troublem = GatedValidRegNext(s2_troublem)
val s3_kill = s3_in.uop.robIdx.needFlush(io.redirect)
val s3_vecout = Wire(new OnlyVecExuOutput)
val s3_vecActive = RegEnable(s2_out.vecActive, true.B, s2_fire)
val s3_isvec = RegEnable(s2_out.isvec, false.B, s2_fire)
val s3_vec_alignedType = RegEnable(s2_out.alignedType, s2_fire)
val s3_vec_mBIndex = RegEnable(s2_out.mbIndex, s2_fire)
val s3_frm_mabuf = s3_in.isFrmMisAlignBuf
val s3_mmio_req = RegNext(s2_mmio_req)
val s3_pdest = RegNext(Mux(s2_valid, s2_out.uop.pdest, s2_mmio_req.bits.uop.pdest))
val s3_rfWen = RegEnable(Mux(s2_valid, s2_out.uop.rfWen, s2_mmio_req.bits.uop.rfWen), s2_valid || s2_mmio_req.valid)
val s3_fpWen = RegEnable(Mux(s2_valid, s2_out.uop.fpWen, s2_mmio_req.bits.uop.fpWen), s2_valid || s2_mmio_req.valid)
val s3_data_select = RegEnable(s2_data_select, 0.U(s2_data_select.getWidth.W), s2_fire)
val s3_data_select_by_offset = RegEnable(s2_data_select_by_offset, 0.U.asTypeOf(s2_data_select_by_offset), s2_fire)
val s3_hw_err =
if (EnableAccurateLoadError) {
io.dcache.resp.bits.error_delayed && GatedValidRegNext(io.csrCtrl.cache_error_enable) && s3_troublem
} else {
WireInit(false.B)
}
val s3_safe_wakeup = RegEnable(s2_safe_wakeup, s2_fire)
val s3_safe_writeback = RegEnable(s2_safe_writeback, s2_fire) || s3_hw_err
val s3_exception = RegEnable(s2_real_exception, s2_fire)
val s3_mis_align = RegEnable(s2_mis_align, s2_fire) && !s3_exception
val s3_misalign_can_go = RegEnable(!isAfter(s2_out.uop.lqIdx, io.lsq.lqDeqPtr) || io.misalign_allow_spec, s2_fire)
val s3_trigger_debug_mode = RegEnable(s2_trigger_debug_mode, false.B, s2_fire)
// TODO: Fix vector load merge buffer nack
val s3_vec_mb_nack = Wire(Bool())
s3_vec_mb_nack := false.B
XSError(s3_valid && s3_vec_mb_nack, "Merge buffer should always accept vector loads!")
s3_ready := !s3_valid || s3_kill || io.ldout.ready
// forwrad last beat
val s3_fast_rep_canceled = io.replay.valid && io.replay.bits.forward_tlDchannel || io.misalign_ldin.valid || !io.dcache.req.ready
val s3_can_enter_lsq_valid = s3_valid && (!s3_fast_rep || s3_fast_rep_canceled) && !s3_in.feedbacked
io.lsq.ldin.valid := s3_can_enter_lsq_valid
// TODO: check this --by hx
// io.lsq.ldin.valid := s3_valid && (!s3_fast_rep || !io.fast_rep_out.ready) && !s3_in.feedbacked && !s3_in.lateKill
io.lsq.ldin.bits := s3_in
io.lsq.ldin.bits.miss := s3_in.miss
// connect to misalignBuffer
val toMisalignBufferValid = s3_can_enter_lsq_valid && s3_mis_align && !s3_frm_mabuf
io.misalign_enq.req.valid := toMisalignBufferValid && s3_misalign_can_go
io.misalign_enq.req.bits := s3_in
io.misalign_enq.revoke := false.B
/* <------- DANGEROUS: Don't change sequence here ! -------> */
io.lsq.ldin.bits.nc_with_data := s3_nc_with_data
io.lsq.ldin.bits.data_wen_dup := s3_ld_valid_dup.asBools
io.lsq.ldin.bits.replacementUpdated := io.dcache.resp.bits.replacementUpdated
io.lsq.ldin.bits.missDbUpdated := GatedValidRegNext(s2_fire && s2_in.hasROBEntry && !s2_in.tlbMiss && !s2_in.missDbUpdated)
io.lsq.ldin.bits.updateAddrValid := !s3_mis_align && (!s3_frm_mabuf || s3_in.isFinalSplit) || s3_exception
io.lsq.ldin.bits.hasException := false.B
io.s3_dly_ld_err := false.B // s3_dly_ld_err && s3_valid
io.lsq.ldin.bits.dcacheRequireReplay := s3_dcache_rep
val s3_vp_match_fail = GatedValidRegNext(s2_fwd_vp_match_invalid) && s3_troublem
val s3_rep_frm_fetch = s3_vp_match_fail
val s3_ldld_rep_inst =
io.lsq.ldld_nuke_query.resp.valid &&
io.lsq.ldld_nuke_query.resp.bits.rep_frm_fetch &&
GatedValidRegNext(io.csrCtrl.ldld_vio_check_enable)
val s3_flushPipe = s3_ldld_rep_inst
val s3_lrq_rep_info = WireInit(s3_in.rep_info)
s3_lrq_rep_info.misalign_nack := toMisalignBufferValid && !(io.misalign_enq.req.ready && s3_misalign_can_go)
val s3_lrq_sel_rep_cause = PriorityEncoderOH(s3_lrq_rep_info.cause.asUInt)
val s3_replayqueue_rep_cause = WireInit(0.U.asTypeOf(s3_in.rep_info.cause))
val s3_mab_rep_info = WireInit(s3_in.rep_info)
val s3_mab_sel_rep_cause = PriorityEncoderOH(s3_mab_rep_info.cause.asUInt)
val s3_misalign_rep_cause = WireInit(0.U.asTypeOf(s3_in.rep_info.cause))
s3_misalign_rep_cause := VecInit(s3_mab_sel_rep_cause.asBools)
when (s3_exception || s3_hw_err || s3_rep_frm_fetch || s3_frm_mabuf) {
s3_replayqueue_rep_cause := 0.U.asTypeOf(s3_lrq_rep_info.cause.cloneType)
} .otherwise {
s3_replayqueue_rep_cause := VecInit(s3_lrq_sel_rep_cause.asBools)
}
io.lsq.ldin.bits.rep_info.cause := s3_replayqueue_rep_cause
// Int load, if hit, will be writebacked at s3
s3_out.valid := s3_valid && s3_safe_writeback && !toMisalignBufferValid
s3_out.bits.uop := s3_in.uop
s3_out.bits.uop.fpWen := s3_in.uop.fpWen
s3_out.bits.uop.exceptionVec(loadAccessFault) := s3_in.uop.exceptionVec(loadAccessFault) && s3_vecActive
s3_out.bits.uop.exceptionVec(hardwareError) := s3_hw_err && s3_vecActive
s3_out.bits.uop.flushPipe := false.B
s3_out.bits.uop.replayInst := false.B
s3_out.bits.data := s3_in.data
s3_out.bits.isFromLoadUnit := true.B
s3_out.bits.debug.isMMIO := s3_in.mmio
s3_out.bits.debug.isNCIO := s3_in.nc && !s3_in.memBackTypeMM
s3_out.bits.debug.isPerfCnt := false.B
s3_out.bits.debug.paddr := s3_in.paddr
s3_out.bits.debug.vaddr := s3_in.vaddr
// Vector load, writeback to merge buffer
// TODO: Add assertion in merge buffer, merge buffer must accept vec load writeback
s3_vecout.isvec := s3_isvec
s3_vecout.vecdata := 0.U // Data will be assigned later
s3_vecout.mask := s3_in.mask
// s3_vecout.rob_idx_valid := s3_in.rob_idx_valid
// s3_vecout.inner_idx := s3_in.inner_idx
// s3_vecout.rob_idx := s3_in.rob_idx
// s3_vecout.offset := s3_in.offset
s3_vecout.reg_offset := s3_in.reg_offset
s3_vecout.vecActive := s3_vecActive
s3_vecout.is_first_ele := s3_in.is_first_ele
// s3_vecout.uopQueuePtr := DontCare // uopQueuePtr is already saved in flow queue
// s3_vecout.flowPtr := s3_in.flowPtr
s3_vecout.elemIdx := s3_in.elemIdx // elemIdx is already saved in flow queue // TODO:
s3_vecout.elemIdxInsideVd := s3_in.elemIdxInsideVd
s3_vecout.trigger := s3_in.uop.trigger
s3_vecout.vstart := s3_in.uop.vpu.vstart
s3_vecout.vecTriggerMask := s3_in.vecTriggerMask
val s3_usSecondInv = s3_in.usSecondInv
val s3_frm_mis_flush = s3_frm_mabuf &&
(io.misalign_ldout.bits.rep_info.fwd_fail || io.misalign_ldout.bits.rep_info.mem_amb || io.misalign_ldout.bits.rep_info.nuke
|| io.misalign_ldout.bits.rep_info.rar_nack || io.misalign_ldout.bits.rep_info.raw_nack)
io.rollback.valid := s3_valid && (s3_rep_frm_fetch || s3_flushPipe || s3_frm_mis_flush) && !s3_exception
io.rollback.bits := DontCare
io.rollback.bits.isRVC := s3_out.bits.uop.preDecodeInfo.isRVC
io.rollback.bits.robIdx := s3_out.bits.uop.robIdx
io.rollback.bits.ftqIdx := s3_out.bits.uop.ftqPtr
io.rollback.bits.ftqOffset := s3_out.bits.uop.ftqOffset
io.rollback.bits.level := Mux(s3_rep_frm_fetch || s3_frm_mis_flush, RedirectLevel.flush, RedirectLevel.flushAfter)
io.rollback.bits.cfiUpdate.target := s3_out.bits.uop.pc
io.rollback.bits.debug_runahead_checkpoint_id := s3_out.bits.uop.debugInfo.runahead_checkpoint_id
/* <------- DANGEROUS: Don't change sequence here ! -------> */
io.lsq.ldin.bits.uop := s3_out.bits.uop
// io.lsq.ldin.bits.uop.exceptionVec(loadAddrMisaligned) := Mux(s3_in.onlyMisalignException, false.B, s3_in.uop.exceptionVec(loadAddrMisaligned))
val s3_revoke = s3_exception || io.lsq.ldin.bits.rep_info.need_rep || s3_mis_align || (s3_frm_mabuf && io.misalign_ldout.bits.rep_info.need_rep)
io.lsq.ldld_nuke_query.revoke := s3_revoke
io.lsq.stld_nuke_query.revoke := s3_revoke
// feedback slow
s3_fast_rep := RegNext(s2_fast_rep)
val s3_fb_no_waiting = !s3_in.isLoadReplay &&
(!(s3_fast_rep && !s3_fast_rep_canceled)) &&
!s3_in.feedbacked
// feedback: scalar load will send feedback to RS
// vector load will send signal to VL Merge Buffer, then send feedback at granularity of uops
io.feedback_slow.valid := s3_valid && s3_fb_no_waiting && !s3_isvec && !s3_frm_mabuf
io.feedback_slow.bits.hit := !s3_lrq_rep_info.need_rep || io.lsq.ldin.ready
io.feedback_slow.bits.flushState := s3_in.ptwBack
io.feedback_slow.bits.robIdx := s3_in.uop.robIdx
io.feedback_slow.bits.sqIdx := s3_in.uop.sqIdx
io.feedback_slow.bits.lqIdx := s3_in.uop.lqIdx
io.feedback_slow.bits.sourceType := RSFeedbackType.lrqFull
io.feedback_slow.bits.dataInvalidSqIdx := DontCare
// TODO: vector wakeup?
io.ldCancel.ld2Cancel := s3_valid && !s3_safe_wakeup && !s3_isvec
val s3_ld_wb_meta = Mux(s3_valid, s3_out.bits, s3_mmio_req.bits)
// data from load queue refill
val s3_ld_raw_data_frm_mmio = RegNextN(io.lsq.ld_raw_data, 3)
val s3_merged_data_frm_mmio = s3_ld_raw_data_frm_mmio.mergedData()
val s3_picked_data_frm_mmio = LookupTree(s3_ld_raw_data_frm_mmio.addrOffset, List(
"b000".U -> s3_merged_data_frm_mmio(63, 0),
"b001".U -> s3_merged_data_frm_mmio(63, 8),
"b010".U -> s3_merged_data_frm_mmio(63, 16),
"b011".U -> s3_merged_data_frm_mmio(63, 24),
"b100".U -> s3_merged_data_frm_mmio(63, 32),
"b101".U -> s3_merged_data_frm_mmio(63, 40),
"b110".U -> s3_merged_data_frm_mmio(63, 48),
"b111".U -> s3_merged_data_frm_mmio(63, 56)
))
val s3_ld_data_frm_mmio = rdataHelper(s3_ld_raw_data_frm_mmio.uop, s3_picked_data_frm_mmio)
/* data from pipe, which forward from respectively
* dcache hit: [D channel, mshr, sbuffer, sq]
* nc_with_data: [sq]
*/
val s2_ld_data_frm_nc = shiftDataToHigh(s2_out.paddr, s2_out.data)
val s2_ld_raw_data_frm_pipe = Wire(new LoadDataFromDcacheBundle)
s2_ld_raw_data_frm_pipe.respDcacheData := Mux(s2_nc_with_data, s2_ld_data_frm_nc, io.dcache.resp.bits.data)
s2_ld_raw_data_frm_pipe.forward_D := s2_fwd_frm_d_chan && !s2_nc_with_data
s2_ld_raw_data_frm_pipe.forwardData_D := s2_fwd_data_frm_d_chan
s2_ld_raw_data_frm_pipe.forward_mshr := s2_fwd_frm_mshr && !s2_nc_with_data
s2_ld_raw_data_frm_pipe.forwardData_mshr := s2_fwd_data_frm_mshr
s2_ld_raw_data_frm_pipe.forward_result_valid := s2_fwd_data_valid
s2_ld_raw_data_frm_pipe.forwardMask := s2_fwd_mask
s2_ld_raw_data_frm_pipe.forwardData := s2_fwd_data
s2_ld_raw_data_frm_pipe.uop := s2_out.uop
s2_ld_raw_data_frm_pipe.addrOffset := s2_out.paddr(3, 0)
val s2_ld_raw_data_frm_tlD = s2_ld_raw_data_frm_pipe.mergeTLData()
val s2_merged_data_frm_pipe = s2_ld_raw_data_frm_pipe.mergeLsqFwdData(s2_ld_raw_data_frm_tlD)
val s3_merged_data_frm_pipe = RegEnable(s2_merged_data_frm_pipe, s2_fire)
// duplicate reg for ldout and vecldout
private val LdDataDup = 3
require(LdDataDup >= 2)
val s3_data_frm_pipe = VecInit((0 until LdDataDup).map(i => {
VecInit(Seq(
s3_merged_data_frm_pipe(63, 0),
s3_merged_data_frm_pipe(71, 8),
s3_merged_data_frm_pipe(79, 16),
s3_merged_data_frm_pipe(87, 24),
s3_merged_data_frm_pipe(95, 32),
s3_merged_data_frm_pipe(103, 40),
s3_merged_data_frm_pipe(111, 48),
s3_merged_data_frm_pipe(119, 56),
s3_merged_data_frm_pipe(127, 64),
s3_merged_data_frm_pipe(127, 72),
s3_merged_data_frm_pipe(127, 80),
s3_merged_data_frm_pipe(127, 88),
s3_merged_data_frm_pipe(127, 96),
s3_merged_data_frm_pipe(127, 104),
s3_merged_data_frm_pipe(127, 112),
s3_merged_data_frm_pipe(127, 120),
))
}))
val s3_picked_data_frm_pipe = VecInit((0 until LdDataDup).map(i => {
Mux1H(s3_data_select_by_offset, s3_data_frm_pipe(i))
}))
val s3_ld_data_frm_pipe = VecInit((0 until LdDataDup).map(i => {
newRdataHelper(s3_data_select, s3_picked_data_frm_pipe(i))
}))
// FIXME: add 1 cycle delay ?
// io.lsq.uncache.ready := !s3_valid
val s3_ldout_valid = s3_mmio_req.valid ||
s3_out.valid && RegNext(!s2_out.isvec && !s2_out.isFrmMisAlignBuf)
val s3_outexception = ExceptionNO.selectByFu(s3_out.bits.uop.exceptionVec, LduCfg).asUInt.orR && s3_vecActive
io.ldout.valid := s3_ldout_valid
io.ldout.bits := s3_ld_wb_meta
io.ldout.bits.data := Mux(s3_valid, s3_ld_data_frm_pipe(0), s3_ld_data_frm_mmio)
io.ldout.bits.uop.rfWen := s3_rfWen
io.ldout.bits.uop.fpWen := s3_fpWen
io.ldout.bits.uop.pdest := s3_pdest
io.ldout.bits.uop.exceptionVec := ExceptionNO.selectByFu(s3_ld_wb_meta.uop.exceptionVec, LduCfg)
io.ldout.bits.isFromLoadUnit := true.B
io.ldout.bits.uop.fuType := Mux(
s3_valid && s3_isvec,
FuType.vldu.U,
FuType.ldu.U
)
XSError(s3_valid && s3_vecout.isvec && s3_in.vecActive && !s3_vecout.mask.orR, "In vecActive, mask complement should not be 0")
// TODO: check this --hx
// io.ldout.valid := s3_out.valid && !s3_out.bits.uop.robIdx.needFlush(io.redirect) && !s3_vecout.isvec ||
// io.lsq.uncache.valid && !io.lsq.uncache.bits.uop.robIdx.needFlush(io.redirect) && !s3_out.valid && !io.lsq.uncache.bits.isVls
// io.ldout.bits.data := Mux(s3_out.valid, s3_ld_data_frm_pipe, s3_ld_data_frm_mmio)
// io.ldout.valid := s3_out.valid && !s3_out.bits.uop.robIdx.needFlush(io.redirect) ||
// s3_mmio_req.valid && !s3_mmio_req.bits.uop.robIdx.needFlush(io.redirect) && !s3_out.valid
// s3 load fast replay
io.fast_rep_out.valid := s3_valid && s3_fast_rep
io.fast_rep_out.bits := s3_in
io.fast_rep_out.bits.lateKill := s3_rep_frm_fetch
io.fast_rep_out.bits.delayedLoadError := s3_hw_err
val vecFeedback = s3_valid && s3_fb_no_waiting && s3_lrq_rep_info.need_rep && !io.lsq.ldin.ready && s3_isvec
// vector output
io.vecldout.bits.alignedType := s3_vec_alignedType
// vec feedback
io.vecldout.bits.vecFeedback := vecFeedback
// TODO: VLSU, uncache data logic
val vecdata = rdataVecHelper(s3_vec_alignedType(1,0), s3_picked_data_frm_pipe(1))
io.vecldout.bits.vecdata.get := Mux(
s3_in.misalignWith16Byte,
s3_picked_data_frm_pipe(1),
Mux(
s3_in.is128bit,
s3_merged_data_frm_pipe,
vecdata
)
)
io.vecldout.bits.isvec := s3_vecout.isvec
io.vecldout.bits.elemIdx := s3_vecout.elemIdx
io.vecldout.bits.elemIdxInsideVd.get := s3_vecout.elemIdxInsideVd
io.vecldout.bits.mask := s3_vecout.mask
io.vecldout.bits.hasException := s3_exception
io.vecldout.bits.reg_offset.get := s3_vecout.reg_offset
io.vecldout.bits.usSecondInv := s3_usSecondInv
io.vecldout.bits.mBIndex := s3_vec_mBIndex
io.vecldout.bits.hit := !s3_lrq_rep_info.need_rep || io.lsq.ldin.ready
io.vecldout.bits.sourceType := RSFeedbackType.lrqFull
io.vecldout.bits.trigger := s3_vecout.trigger
io.vecldout.bits.flushState := DontCare
io.vecldout.bits.exceptionVec := ExceptionNO.selectByFu(s3_out.bits.uop.exceptionVec, VlduCfg)
io.vecldout.bits.vaddr := s3_in.fullva
io.vecldout.bits.vaNeedExt := s3_in.vaNeedExt
io.vecldout.bits.gpaddr := s3_in.gpaddr
io.vecldout.bits.isForVSnonLeafPTE := s3_in.isForVSnonLeafPTE
io.vecldout.bits.mmio := DontCare
io.vecldout.bits.vstart := s3_vecout.vstart
io.vecldout.bits.vecTriggerMask := s3_vecout.vecTriggerMask
io.vecldout.bits.nc := DontCare
io.vecldout.valid := s3_out.valid && !s3_out.bits.uop.robIdx.needFlush(io.redirect) && s3_vecout.isvec && !s3_mis_align && !s3_frm_mabuf //||
// TODO: check this, why !io.lsq.uncache.bits.isVls before?
// Now vector instruction don't support mmio.
// io.lsq.uncache.valid && !io.lsq.uncache.bits.uop.robIdx.needFlush(io.redirect) && !s3_out.valid && io.lsq.uncache.bits.isVls
//io.lsq.uncache.valid && !io.lsq.uncache.bits.uop.robIdx.needFlush(io.redirect) && !s3_out.valid && !io.lsq.uncache.bits.isVls
io.misalign_ldout.valid := s3_valid && (!s3_fast_rep || s3_fast_rep_canceled) && s3_frm_mabuf || s3_misalign_wakeup_req.valid
io.misalign_ldout.bits := Mux(s3_misalign_wakeup_req.valid, s3_misalign_wakeup_req.bits, io.lsq.ldin.bits)
io.misalign_ldout.bits.data := s3_picked_data_frm_pipe(2)
io.misalign_ldout.bits.rep_info.cause := Mux(s3_misalign_wakeup_req.valid, 0.U.asTypeOf(s3_in.rep_info.cause), s3_misalign_rep_cause)
// fast load to load forward
if (EnableLoadToLoadForward) {
io.l2l_fwd_out.valid := s3_valid && !s3_in.mmio && !s3_in.nc && !s3_lrq_rep_info.need_rep
io.l2l_fwd_out.data := Mux(s3_in.vaddr(3), s3_merged_data_frm_pipe(127, 64), s3_merged_data_frm_pipe(63, 0))
io.l2l_fwd_out.dly_ld_err := s3_hw_err || // ecc delayed error
s3_ldld_rep_inst ||
s3_rep_frm_fetch
} else {
io.l2l_fwd_out.valid := false.B
io.l2l_fwd_out.data := DontCare
io.l2l_fwd_out.dly_ld_err := DontCare
}
// s1
io.debug_ls.s1_robIdx := s1_in.uop.robIdx.value
io.debug_ls.s1_isLoadToLoadForward := s1_fire && s1_try_ptr_chasing && !s1_ptr_chasing_canceled
io.debug_ls.s1_isTlbFirstMiss := s1_fire && s1_tlb_miss && s1_in.isFirstIssue
// s2
io.debug_ls.s2_robIdx := s2_in.uop.robIdx.value
io.debug_ls.s2_isBankConflict := s2_fire && (!s2_kill && s2_bank_conflict)
io.debug_ls.s2_isDcacheFirstMiss := s2_fire && io.dcache.resp.bits.miss && s2_in.isFirstIssue
io.debug_ls.s2_isForwardFail := s2_fire && s2_fwd_fail
// s3
io.debug_ls.s3_robIdx := s3_in.uop.robIdx.value
io.debug_ls.s3_isReplayFast := s3_valid && s3_fast_rep && !s3_fast_rep_canceled
io.debug_ls.s3_isReplayRS := RegNext(io.feedback_fast.valid && !io.feedback_fast.bits.hit) || (io.feedback_slow.valid && !io.feedback_slow.bits.hit)
io.debug_ls.s3_isReplaySlow := io.lsq.ldin.valid && io.lsq.ldin.bits.rep_info.need_rep
io.debug_ls.s3_isReplay := s3_valid && s3_lrq_rep_info.need_rep // include fast+slow+rs replay
io.debug_ls.replayCause := s3_lrq_rep_info.cause
io.debug_ls.replayCnt := 1.U
// Topdown
io.lsTopdownInfo.s1.robIdx := s1_in.uop.robIdx.value
io.lsTopdownInfo.s1.vaddr_valid := s1_valid && s1_in.hasROBEntry
io.lsTopdownInfo.s1.vaddr_bits := s1_vaddr
io.lsTopdownInfo.s2.robIdx := s2_in.uop.robIdx.value
io.lsTopdownInfo.s2.paddr_valid := s2_fire && s2_in.hasROBEntry && !s2_in.tlbMiss
io.lsTopdownInfo.s2.paddr_bits := s2_in.paddr
io.lsTopdownInfo.s2.first_real_miss := io.dcache.resp.bits.real_miss
io.lsTopdownInfo.s2.cache_miss_en := s2_fire && s2_in.hasROBEntry && !s2_in.tlbMiss && !s2_in.missDbUpdated
// perf cnt
XSPerfAccumulate("s0_in_valid", io.ldin.valid)
XSPerfAccumulate("s0_in_block", io.ldin.valid && !io.ldin.fire)
XSPerfAccumulate("s0_vecin_valid", io.vecldin.valid)
XSPerfAccumulate("s0_vecin_block", io.vecldin.valid && !io.vecldin.fire)
XSPerfAccumulate("s0_in_fire_first_issue", s0_valid && s0_sel_src.isFirstIssue)
XSPerfAccumulate("s0_lsq_replay_issue", io.replay.fire)
XSPerfAccumulate("s0_lsq_replay_vecissue", io.replay.fire && io.replay.bits.isvec)
XSPerfAccumulate("s0_ldu_fire_first_issue", io.ldin.fire && s0_sel_src.isFirstIssue)
XSPerfAccumulate("s0_fast_replay_issue", io.fast_rep_in.fire)
XSPerfAccumulate("s0_fast_replay_vecissue", io.fast_rep_in.fire && io.fast_rep_in.bits.isvec)
XSPerfAccumulate("s0_stall_out", s0_valid && !s0_can_go)
XSPerfAccumulate("s0_stall_dcache", s0_valid && !io.dcache.req.ready)
XSPerfAccumulate("s0_addr_spec_success", s0_fire && s0_dcache_vaddr(VAddrBits-1, 12) === io.ldin.bits.src(0)(VAddrBits-1, 12))
XSPerfAccumulate("s0_addr_spec_failed", s0_fire && s0_dcache_vaddr(VAddrBits-1, 12) =/= io.ldin.bits.src(0)(VAddrBits-1, 12))
XSPerfAccumulate("s0_addr_spec_success_once", s0_fire && s0_dcache_vaddr(VAddrBits-1, 12) === io.ldin.bits.src(0)(VAddrBits-1, 12) && s0_sel_src.isFirstIssue)
XSPerfAccumulate("s0_addr_spec_failed_once", s0_fire && s0_dcache_vaddr(VAddrBits-1, 12) =/= io.ldin.bits.src(0)(VAddrBits-1, 12) && s0_sel_src.isFirstIssue)
XSPerfAccumulate("s0_vec_addr_vlen_aligned", s0_fire && s0_sel_src.isvec && s0_dcache_vaddr(3, 0) === 0.U)
XSPerfAccumulate("s0_vec_addr_vlen_unaligned", s0_fire && s0_sel_src.isvec && s0_dcache_vaddr(3, 0) =/= 0.U)
XSPerfAccumulate("s0_forward_tl_d_channel", s0_out.forward_tlDchannel)
XSPerfAccumulate("s0_hardware_prefetch_fire", s0_fire && s0_hw_prf_select)
XSPerfAccumulate("s0_software_prefetch_fire", s0_fire && s0_sel_src.prf && s0_src_select_vec(int_iss_idx))
XSPerfAccumulate("s0_hardware_prefetch_blocked", io.prefetch_req.valid && !s0_hw_prf_select)
XSPerfAccumulate("s0_hardware_prefetch_total", io.prefetch_req.valid)
XSPerfAccumulate("s3_rollback_total", io.rollback.valid)
XSPerfAccumulate("s3_rep_frm_fetch_rollback", io.rollback.valid && s3_rep_frm_fetch)
XSPerfAccumulate("s3_flushPipe_rollback", io.rollback.valid && s3_flushPipe)
XSPerfAccumulate("s3_frm_mis_flush_rollback", io.rollback.valid && s3_frm_mis_flush)
XSPerfAccumulate("s1_in_valid", s1_valid)
XSPerfAccumulate("s1_in_fire", s1_fire)
XSPerfAccumulate("s1_in_fire_first_issue", s1_fire && s1_in.isFirstIssue)
XSPerfAccumulate("s1_tlb_miss", s1_fire && s1_tlb_miss)
XSPerfAccumulate("s1_tlb_miss_first_issue", s1_fire && s1_tlb_miss && s1_in.isFirstIssue)
XSPerfAccumulate("s1_stall_out", s1_valid && !s1_can_go)
XSPerfAccumulate("s1_dly_err", s1_valid && s1_fast_rep_dly_err)
XSPerfAccumulate("s2_in_valid", s2_valid)
XSPerfAccumulate("s2_in_fire", s2_fire)
XSPerfAccumulate("s2_in_fire_first_issue", s2_fire && s2_in.isFirstIssue)
XSPerfAccumulate("s2_dcache_miss", s2_fire && io.dcache.resp.bits.miss)
XSPerfAccumulate("s2_dcache_miss_first_issue", s2_fire && io.dcache.resp.bits.miss && s2_in.isFirstIssue)
XSPerfAccumulate("s2_dcache_real_miss_first_issue", s2_fire && io.dcache.resp.bits.miss && s2_in.isFirstIssue)
XSPerfAccumulate("s2_full_forward", s2_fire && s2_full_fwd)
XSPerfAccumulate("s2_dcache_miss_full_forward", s2_fire && s2_dcache_miss)
XSPerfAccumulate("s2_fwd_frm_d_can", s2_valid && s2_fwd_frm_d_chan)
XSPerfAccumulate("s2_fwd_frm_d_chan_or_mshr", s2_valid && s2_fwd_frm_d_chan_or_mshr)
XSPerfAccumulate("s2_stall_out", s2_fire && !s2_can_go)
XSPerfAccumulate("s2_prefetch", s2_fire && s2_prf)
XSPerfAccumulate("s2_prefetch_ignored", s2_fire && s2_prf && io.dcache.s2_mq_nack) // ignore prefetch for mshr full / miss req port conflict
XSPerfAccumulate("s2_prefetch_miss", s2_fire && s2_prf && io.dcache.resp.bits.miss) // prefetch req miss in l1
XSPerfAccumulate("s2_prefetch_hit", s2_fire && s2_prf && !io.dcache.resp.bits.miss) // prefetch req hit in l1
XSPerfAccumulate("s2_prefetch_accept", s2_fire && s2_prf && io.dcache.resp.bits.miss && !io.dcache.s2_mq_nack) // prefetch a missed line in l1, and l1 accepted it
XSPerfAccumulate("s2_forward_req", s2_fire && s2_in.forward_tlDchannel)
XSPerfAccumulate("s2_successfully_forward_channel_D", s2_fire && s2_fwd_frm_d_chan && s2_fwd_data_valid)
XSPerfAccumulate("s2_successfully_forward_mshr", s2_fire && s2_fwd_frm_mshr && s2_fwd_data_valid)
XSPerfAccumulate("load_to_load_forward", s1_try_ptr_chasing && !s1_ptr_chasing_canceled)
XSPerfAccumulate("load_to_load_forward_try", s1_try_ptr_chasing)
XSPerfAccumulate("load_to_load_forward_fail", s1_cancel_ptr_chasing)
XSPerfAccumulate("load_to_load_forward_fail_cancelled", s1_cancel_ptr_chasing && s1_ptr_chasing_canceled)
XSPerfAccumulate("load_to_load_forward_fail_wakeup_mismatch", s1_cancel_ptr_chasing && !s1_ptr_chasing_canceled && s1_not_fast_match)
XSPerfAccumulate("load_to_load_forward_fail_op_not_ld", s1_cancel_ptr_chasing && !s1_ptr_chasing_canceled && !s1_not_fast_match && s1_fu_op_type_not_ld)
XSPerfAccumulate("load_to_load_forward_fail_addr_align", s1_cancel_ptr_chasing && !s1_ptr_chasing_canceled && !s1_not_fast_match && !s1_fu_op_type_not_ld && s1_addr_misaligned)
XSPerfAccumulate("load_to_load_forward_fail_set_mismatch", s1_cancel_ptr_chasing && !s1_ptr_chasing_canceled && !s1_not_fast_match && !s1_fu_op_type_not_ld && !s1_addr_misaligned && s1_addr_mismatch)
XSPerfAccumulate("nc_ld_writeback", io.ldout.valid && s3_nc_with_data)
XSPerfAccumulate("nc_ld_exception", s3_valid && s3_nc_with_data && s3_in.uop.exceptionVec.reduce(_ || _))
XSPerfAccumulate("nc_ldld_vio", s3_valid && s3_nc_with_data && s3_ldld_rep_inst)
XSPerfAccumulate("nc_stld_vio", s3_valid && s3_nc_with_data && s3_in.rep_info.nuke)
XSPerfAccumulate("nc_ldld_vioNack", s3_valid && s3_nc_with_data && s3_in.rep_info.rar_nack)
XSPerfAccumulate("nc_stld_vioNack", s3_valid && s3_nc_with_data && s3_in.rep_info.raw_nack)
XSPerfAccumulate("nc_stld_fwd", s3_valid && s3_nc_with_data && RegNext(s2_full_fwd))
XSPerfAccumulate("nc_stld_fwdNotReady", s3_valid && s3_nc_with_data && RegNext(s2_mem_amb || s2_fwd_fail))
XSPerfAccumulate("nc_stld_fwdAddrMismatch", s3_valid && s3_nc_with_data && s3_vp_match_fail)
// bug lyq: some signals in perfEvents are no longer suitable for the current MemBlock design
// hardware performance counter
val perfEvents = Seq(
("load_s0_in_fire ", s0_fire ),
("load_to_load_forward ", s1_fire && s1_try_ptr_chasing && !s1_ptr_chasing_canceled ),
("stall_dcache ", s0_valid && s0_can_go && !io.dcache.req.ready ),
("load_s1_in_fire ", s0_fire ),
("load_s1_tlb_miss ", s1_fire && io.tlb.resp.bits.miss ),
("load_s2_in_fire ", s1_fire ),
("load_s2_dcache_miss ", s2_fire && io.dcache.resp.bits.miss ),
)
generatePerfEvent()
if (backendParams.debugEn){
dontTouch(s0_src_valid_vec)
dontTouch(s0_src_ready_vec)
dontTouch(s0_src_select_vec)
dontTouch(s3_ld_data_frm_pipe)
s3_data_select_by_offset.map(x=> dontTouch(x))
s3_data_frm_pipe.map(x=> dontTouch(x))
s3_picked_data_frm_pipe.map(x=> dontTouch(x))
}
XSDebug(io.ldout.fire, "ldout %x\n", io.ldout.bits.uop.pc)
// end
}