194 lines
4.3 KiB
Markdown
194 lines
4.3 KiB
Markdown
# NumPy fmin–数组元素的最小元素数
|
||
|
||
> 原文:<https://www.askpython.com/python-modules/numpy/numpy-fmin>
|
||
|
||
大家好,欢迎来到这个关于 **Numpy fmin** 的教程。在本教程中,我们将学习 **NumPy fmin()** 方法,也将看到许多关于这个方法的例子。让我们开始吧!
|
||
|
||
***也读作:[NumPy fmax–数组元素的逐元素最大值](https://www.askpython.com/python-modules/numpy/numpy-fmax)***
|
||
|
||
* * *
|
||
|
||
## 什么是 NumPy fmin?
|
||
|
||
`fmin()`是 [NumPy](https://www.askpython.com/python-modules/numpy) 中的一个函数,它比较两个数组并返回一个包含这两个数组的元素最小值的数组。
|
||
|
||
* * *
|
||
|
||
## NumPy fmin 的语法
|
||
|
||
让我们来看看`fmin()`函数的语法。
|
||
|
||
```py
|
||
numpy.fmin(x1, x2, out=None)
|
||
|
||
```
|
||
|
||
| **参数** | **描述** | **必需/可选** |
|
||
| x1 | 输入数组 1。 | 需要 |
|
||
| x2 | 输入数组 2。 | 需要 |
|
||
| 在外 | 放置结果的替代输出数组。它必须具有与预期输出相同的形状。 | 可选择的 |
|
||
|
||
**返回:**
|
||
包含 *x1* 和 *x2* 的元素最大值的新数组。
|
||
|
||
* 如果 *x1* 和 *x2* 都是标量,那么输出也是标量。
|
||
* 如果 *x1* 或 *x2* 中的任何一个包含 NaN 值,则该逐元素比较的输出是非 NaN 值。
|
||
* 如果比较中的两个元素都是 NaN,则 NaN 作为最小元素返回。
|
||
|
||
* * *
|
||
|
||
## 例子
|
||
|
||
现在让我们看几个例子来更好地理解`fmin()`函数。
|
||
|
||
### 当两个输入都是标量时
|
||
|
||
```py
|
||
import numpy as np
|
||
|
||
a = 2
|
||
b = 6
|
||
# using fmin function to calculate the element-wise minimum
|
||
ans = np.fmin(a, b)
|
||
print("a =", a, "\nb =", b)
|
||
print("Result =", ans)
|
||
|
||
```
|
||
|
||
**输出:**
|
||
|
||
```py
|
||
a = 2
|
||
b = 6
|
||
Result = 2
|
||
|
||
```
|
||
|
||
因为 2<6,所以 2 是这里的最小元素。
|
||
|
||
* * *
|
||
|
||
### 一维数组的逐元素最小值
|
||
|
||
```py
|
||
import numpy as np
|
||
|
||
a = [5, 3, -5, 8, -2]
|
||
b = [1, 8, -2, 12, -13]
|
||
# using fmin function to calculate the element-wise minimum
|
||
ans = np.fmin(a, b)
|
||
print("a =", a, "\nb =", b)
|
||
print("Result =", ans)
|
||
|
||
```
|
||
|
||
**输出:**
|
||
|
||
```py
|
||
a = [5, 3, -5, 8, -2]
|
||
b = [1, 8, -2, 12, -13]
|
||
Result = [ 1 3 -5 8 -13]
|
||
|
||
```
|
||
|
||
生成的数组计算如下:
|
||
|
||
```py
|
||
ans[0] = min(a[0], b[0]) = min(5, 1) = 1
|
||
ans[1] = min(a[1], b[1]) = min(3, 8) = 3
|
||
ans[2] = min(a[2], b[2]) = min(-5, -2) = -5
|
||
ans[3] = min(a[3], b[3]) = min(8, 12) = 8
|
||
ans[4] = min(a[4], b[4]) = min(-2, -13) = -13
|
||
|
||
```
|
||
|
||
* * *
|
||
|
||
### 二维数组的逐元素最小值
|
||
|
||
```py
|
||
import numpy as np
|
||
|
||
a = [[13, 8], [10, 7]]
|
||
b = [[5, 15], [30, 4]]
|
||
# using fmin function to calculate the element-wise minimum
|
||
ans = np.fmin(a, b)
|
||
print("a =", a, "\nb =", b)
|
||
print("Result =\n", ans)
|
||
|
||
```
|
||
|
||
**输出:**
|
||
|
||
```py
|
||
a = [[13, 8], [10, 7]]
|
||
b = [[5, 15], [30, 4]]
|
||
Result =
|
||
[[ 5 8]
|
||
[10 4]]
|
||
|
||
```
|
||
|
||
这里,两个输入数组都是 2×2 数组,因此得到的数组也是 2×2 数组,计算如下:
|
||
|
||
```py
|
||
ans[0][0] = min(a[0][0], b[0][0]) = min(13, 5) = 5
|
||
ans[0][1] = min(a[0][1], b[0][1]) = min(8, 15) = 8
|
||
|
||
ans[1][0] = min(a[1][0], b[1][0]) = min(10, 30) = 10
|
||
ans[1][1] = min(a[1][1], b[1][1]) = min(7, 4) = 4
|
||
|
||
```
|
||
|
||
* * *
|
||
|
||
### 包含 nan 的数组的逐元素最小值
|
||
|
||
现在让我们看看`numpy.fmin()`方法是如何处理 nan 的。
|
||
|
||
```py
|
||
import numpy as np
|
||
|
||
a = [4, 3, 10, np.nan, np.nan]
|
||
b = [2, np.nan, 5, 8, np.nan]
|
||
# using fmin function to calculate the element-wise minimum
|
||
ans = np.fmin(a, b)
|
||
print("a =", a, "\nb =", b)
|
||
print("Result =", ans)
|
||
|
||
```
|
||
|
||
**输出:**
|
||
|
||
```py
|
||
a = [4, 3, 10, nan, nan]
|
||
b = [2, nan, 5, 8, nan]
|
||
Result = [ 2\. 3\. 5\. 8\. nan]
|
||
|
||
```
|
||
|
||
这里,
|
||
|
||
```py
|
||
ans[0] = min(a[0], b[0]) = min(4, 2) = 2
|
||
ans[1] = min(a[1], b[1]) = min(3, nan) = 3
|
||
ans[2] = min(a[2], b[2]) = min(10, 5) = 5
|
||
ans[3] = min(a[3], b[3]) = min(nan, 8) = 8
|
||
ans[4] = min(a[4], b[4]) = min(nan, nan) = nan
|
||
|
||
```
|
||
|
||
在上面的数组中,索引 1 和 3 处的元素之一是 nan,因此最小值是非 NaN 值。此外,两个输入数组中索引 4 处的元素都是 NaN,因此得出的最小值也是 NaN,如本教程前面所述。
|
||
|
||
* * *
|
||
|
||
## 摘要
|
||
|
||
仅此而已!在本教程中,我们学习了 **Numpy fmin** 方法,并使用相同的方法练习了不同类型的示例。
|
||
如果你想了解更多关于 NumPy 的信息,请随意浏览我们的 [NumPy 教程](https://www.askpython.com/python-modules/numpy)。
|
||
|
||
* * *
|
||
|
||
## 参考
|
||
|
||
* [NumPy fmin 官方文档](https://numpy.org/doc/stable/reference/generated/numpy.fmin.html) |