| 
									
										
										
										
											2023-12-03 07:09:46 +08:00
										 |  |  | /*
 | 
					
						
							| 
									
										
										
										
											2024-09-05 15:35:49 +08:00
										 |  |  |  * Copyright 2023-2024 The OpenSSL Project Authors. All Rights Reserved. | 
					
						
							| 
									
										
										
										
											2023-12-03 07:09:46 +08:00
										 |  |  |  * | 
					
						
							|  |  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
					
						
							|  |  |  |  * this file except in compliance with the License.  You can obtain a copy | 
					
						
							|  |  |  |  * in the file LICENSE in the source distribution or at | 
					
						
							|  |  |  |  * https://www.openssl.org/source/license.html
 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <stdio.h>
 | 
					
						
							|  |  |  | #include <string.h>
 | 
					
						
							|  |  |  | #include <openssl/core_names.h>
 | 
					
						
							|  |  |  | #include <openssl/evp.h>
 | 
					
						
							|  |  |  | #include <openssl/err.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * This is a demonstration of key exchange using ECDH. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * EC key exchange requires 2 parties (peers) to first agree on shared group | 
					
						
							|  |  |  |  * parameters (the EC curve name). Each peer then generates a public/private | 
					
						
							|  |  |  |  * key pair using the shared curve name. Each peer then gives their public key | 
					
						
							|  |  |  |  * to the other peer. A peer can then derive the same shared secret using their | 
					
						
							|  |  |  |  * private key and the other peers public key. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Object used to store information for a single Peer */ | 
					
						
							|  |  |  | typedef struct peer_data_st { | 
					
						
							|  |  |  |     const char *name;               /* name of peer */ | 
					
						
							|  |  |  |     const char *curvename;          /* The shared curve name */ | 
					
						
							|  |  |  |     EVP_PKEY *priv;                 /* private keypair */ | 
					
						
							|  |  |  |     EVP_PKEY *pub;                  /* public key to send to other peer */ | 
					
						
							|  |  |  |     unsigned char *secret;          /* allocated shared secret buffer */ | 
					
						
							|  |  |  |     size_t secretlen; | 
					
						
							|  |  |  | } PEER_DATA; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * The public key needs to be given to the other peer | 
					
						
							|  |  |  |  * The following code extracts the public key data from the private key | 
					
						
							|  |  |  |  * and then builds an EVP_KEY public key. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | static int get_peer_public_key(PEER_DATA *peer, OSSL_LIB_CTX *libctx) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     int ret = 0; | 
					
						
							|  |  |  |     EVP_PKEY_CTX *ctx; | 
					
						
							|  |  |  |     OSSL_PARAM params[3]; | 
					
						
							|  |  |  |     unsigned char pubkeydata[256]; | 
					
						
							|  |  |  |     size_t pubkeylen; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Get the EC encoded public key data from the peers private key */ | 
					
						
							|  |  |  |     if (!EVP_PKEY_get_octet_string_param(peer->priv, OSSL_PKEY_PARAM_PUB_KEY, | 
					
						
							|  |  |  |                                          pubkeydata, sizeof(pubkeydata), | 
					
						
							|  |  |  |                                          &pubkeylen)) | 
					
						
							|  |  |  |         return 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Create a EC public key from the public key data */ | 
					
						
							|  |  |  |     ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL); | 
					
						
							|  |  |  |     if (ctx == NULL) | 
					
						
							|  |  |  |         return 0; | 
					
						
							|  |  |  |     params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, | 
					
						
							|  |  |  |                                                  (char *)peer->curvename, 0); | 
					
						
							|  |  |  |     params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY, | 
					
						
							|  |  |  |                                                   pubkeydata, pubkeylen); | 
					
						
							|  |  |  |     params[2] = OSSL_PARAM_construct_end(); | 
					
						
							|  |  |  |     ret = EVP_PKEY_fromdata_init(ctx) > 0 | 
					
						
							|  |  |  |           && (EVP_PKEY_fromdata(ctx, &peer->pub, EVP_PKEY_PUBLIC_KEY, | 
					
						
							|  |  |  |                                 params) > 0); | 
					
						
							|  |  |  |     EVP_PKEY_CTX_free(ctx); | 
					
						
							|  |  |  |     return ret; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int create_peer(PEER_DATA *peer, OSSL_LIB_CTX *libctx) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     int ret = 0; | 
					
						
							|  |  |  |     EVP_PKEY_CTX *ctx = NULL; | 
					
						
							|  |  |  |     OSSL_PARAM params[2]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, | 
					
						
							|  |  |  |                                                  (char *)peer->curvename, 0); | 
					
						
							|  |  |  |     params[1] = OSSL_PARAM_construct_end(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL); | 
					
						
							|  |  |  |     if (ctx == NULL) | 
					
						
							|  |  |  |         return 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (EVP_PKEY_keygen_init(ctx) <= 0 | 
					
						
							|  |  |  |             || !EVP_PKEY_CTX_set_params(ctx, params) | 
					
						
							|  |  |  |             || EVP_PKEY_generate(ctx, &peer->priv) <= 0 | 
					
						
							|  |  |  |             || !get_peer_public_key(peer, libctx)) { | 
					
						
							|  |  |  |         EVP_PKEY_free(peer->priv); | 
					
						
							|  |  |  |         peer->priv = NULL; | 
					
						
							|  |  |  |         goto err; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     ret = 1; | 
					
						
							|  |  |  | err: | 
					
						
							|  |  |  |     EVP_PKEY_CTX_free(ctx); | 
					
						
							|  |  |  |     return ret; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void destroy_peer(PEER_DATA *peer) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     EVP_PKEY_free(peer->priv); | 
					
						
							|  |  |  |     EVP_PKEY_free(peer->pub); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int generate_secret(PEER_DATA *peerA, EVP_PKEY *peerBpub, | 
					
						
							|  |  |  |                            OSSL_LIB_CTX *libctx) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     unsigned char *secret = NULL; | 
					
						
							|  |  |  |     size_t secretlen = 0; | 
					
						
							|  |  |  |     EVP_PKEY_CTX *derivectx; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Create an EVP_PKEY_CTX that contains peerA's private key */ | 
					
						
							|  |  |  |     derivectx = EVP_PKEY_CTX_new_from_pkey(libctx, peerA->priv, NULL); | 
					
						
							|  |  |  |     if (derivectx == NULL) | 
					
						
							|  |  |  |         return 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (EVP_PKEY_derive_init(derivectx) <= 0) | 
					
						
							|  |  |  |         goto cleanup; | 
					
						
							|  |  |  |     /* Set up peerB's public key */ | 
					
						
							|  |  |  |     if (EVP_PKEY_derive_set_peer(derivectx, peerBpub) <= 0) | 
					
						
							|  |  |  |         goto cleanup; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /*
 | 
					
						
							|  |  |  |      * For backwards compatibility purposes the OpenSSL ECDH provider supports | 
					
						
							|  |  |  |      * optionally using a X963KDF to expand the secret data. This can be done | 
					
						
							|  |  |  |      * with code similar to the following. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *   OSSL_PARAM params[5]; | 
					
						
							|  |  |  |      *   size_t outlen = 128; | 
					
						
							|  |  |  |      *   unsigned char ukm[] = { 1, 2, 3, 4 }; | 
					
						
							|  |  |  |      *   params[0] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_TYPE, | 
					
						
							|  |  |  |      *                                                "X963KDF", 0); | 
					
						
							|  |  |  |      *   params[1] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_DIGEST, | 
					
						
							|  |  |  |      *                                                "SHA256", 0); | 
					
						
							|  |  |  |      *   params[2] = OSSL_PARAM_construct_size_t(OSSL_EXCHANGE_PARAM_KDF_OUTLEN, | 
					
						
							|  |  |  |      *                                           &outlen); | 
					
						
							|  |  |  |      *   params[3] = OSSL_PARAM_construct_octet_string(OSSL_EXCHANGE_PARAM_KDF_UKM, | 
					
						
							|  |  |  |      *                                                 ukm, sizeof(ukm)); | 
					
						
							|  |  |  |      *   params[4] = OSSL_PARAM_construct_end(); | 
					
						
							|  |  |  |      *   if (!EVP_PKEY_CTX_set_params(derivectx, params)) | 
					
						
							|  |  |  |      *       goto cleanup; | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      * Note: After the secret is generated below, the peer could alternatively | 
					
						
							|  |  |  |      * pass the secret to a KDF to derive additional key data from the secret. | 
					
						
							|  |  |  |      * See demos/kdf/hkdf.c for an example (where ikm is the secret key) | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Calculate the size of the secret and allocate space */ | 
					
						
							|  |  |  |     if (EVP_PKEY_derive(derivectx, NULL, &secretlen) <= 0) | 
					
						
							|  |  |  |         goto cleanup; | 
					
						
							|  |  |  |     secret = (unsigned char *)OPENSSL_malloc(secretlen); | 
					
						
							|  |  |  |     if (secret == NULL) | 
					
						
							|  |  |  |         goto cleanup; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /*
 | 
					
						
							|  |  |  |      * Derive the shared secret. In this example 32 bytes are generated. | 
					
						
							|  |  |  |      * For EC curves the secret size is related to the degree of the curve | 
					
						
							|  |  |  |      * which is 256 bits for P-256. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     if (EVP_PKEY_derive(derivectx, secret, &secretlen) <= 0) | 
					
						
							|  |  |  |         goto cleanup; | 
					
						
							|  |  |  |     peerA->secret = secret; | 
					
						
							|  |  |  |     peerA->secretlen = secretlen; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     printf("Shared secret (%s):\n", peerA->name); | 
					
						
							|  |  |  |     BIO_dump_indent_fp(stdout, peerA->secret, peerA->secretlen, 2); | 
					
						
							|  |  |  |     putchar('\n'); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return 1; | 
					
						
							|  |  |  | cleanup: | 
					
						
							|  |  |  |     OPENSSL_free(secret); | 
					
						
							|  |  |  |     EVP_PKEY_CTX_free(derivectx); | 
					
						
							|  |  |  |     return 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int main(void) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     int ret = EXIT_FAILURE; | 
					
						
							|  |  |  |     /* Initialise the 2 peers that will share a secret */ | 
					
						
							|  |  |  |     PEER_DATA peer1 = {"peer 1", "P-256"}; | 
					
						
							|  |  |  |     PEER_DATA peer2 = {"peer 2", "P-256"}; | 
					
						
							|  |  |  |     /*
 | 
					
						
							|  |  |  |      * Setting libctx to NULL uses the default library context | 
					
						
							|  |  |  |      * Use OSSL_LIB_CTX_new() to create a non default library context | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     OSSL_LIB_CTX *libctx = NULL; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Each peer creates a (Ephemeral) keypair */ | 
					
						
							|  |  |  |     if (!create_peer(&peer1, libctx) | 
					
						
							|  |  |  |             || !create_peer(&peer2, libctx)) { | 
					
						
							|  |  |  |         fprintf(stderr, "Create peer failed\n"); | 
					
						
							|  |  |  |         goto cleanup; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /*
 | 
					
						
							|  |  |  |      * Each peer uses its private key and the other peers public key to | 
					
						
							|  |  |  |      * derive a shared secret | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     if (!generate_secret(&peer1, peer2.pub, libctx) | 
					
						
							|  |  |  |             || !generate_secret(&peer2, peer1.pub, libctx)) { | 
					
						
							|  |  |  |         fprintf(stderr, "Generate secrets failed\n"); | 
					
						
							|  |  |  |         goto cleanup; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* For illustrative purposes demonstrate that the derived secrets are equal */ | 
					
						
							|  |  |  |     if (peer1.secretlen != peer2.secretlen | 
					
						
							|  |  |  |             || CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secretlen) != 0) { | 
					
						
							|  |  |  |         fprintf(stderr, "Derived secrets do not match\n"); | 
					
						
							|  |  |  |         goto cleanup; | 
					
						
							|  |  |  |     } else { | 
					
						
							|  |  |  |         fprintf(stdout, "Derived secrets match\n"); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ret = EXIT_SUCCESS; | 
					
						
							|  |  |  | cleanup: | 
					
						
							|  |  |  |     if (ret != EXIT_SUCCESS) | 
					
						
							|  |  |  |         ERR_print_errors_fp(stderr); | 
					
						
							|  |  |  |     destroy_peer(&peer2); | 
					
						
							|  |  |  |     destroy_peer(&peer1); | 
					
						
							|  |  |  |     return ret; | 
					
						
							|  |  |  | } |